Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(18): e37700, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39364237

RESUMO

Pheretima is a popular healthy food, but Pheretima and related foods have specific stenchy odor, especially after decocting or warm soaking, the odor is intense, resulting in nausea and vomiting. This indicates that the release of stenchy odor components is intensified when Pheretima was exposed to hot water. It is urgent to study the composition and release pattern of the stenchy odor components of Pheretima. In this study, a series of samples with different odors were prepared by the combination of SFE-CO2 and warm soaking. The results showed that the fishy and smoky odor of Pheretima were heavier, attributed to the components such as dimethyl trisulfide, TMA, and guaiacol. When Pheretima was exposed to hot water, the fishy odor increased sharply. Dimethyl trisulfide and TMA were the key odor components, especially the exposure of TMA increased by 2∼3 times after warm soaking. The volatilization rate of n-hexanal, TMA, dimethyl trisulfide and other components was found to be highly volatile, and the volatilization rate at 75 °C was 2.5 times that at room temperature. This study proved for the first time that stenchy odor substances include two categories: water-soluble and liposoluble. And found that the water-soluble odor components accelerate their exposure and volatilization in warm water, which is the scientific principle of "Pheretima smells worse exposed to water".

2.
Pathol Res Pract ; 258: 155330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733868

RESUMO

Mitochondrial DNA (mtDNA) is a circular double-stranded genome that exists independently of the nucleus. In recent years, research on mtDNA has significantly increased, leading to a gradual increase in understanding of its physiological and pathological characteristics. Reactive oxygen species (ROS) and other factors can damage mtDNA. This damaged mtDNA can escape from the mitochondria to the cytoplasm or extracellular space, subsequently activating immune signaling pathways, such as NLR family pyrin domain protein 3 (NLRP3), and triggering inflammatory responses. Numerous studies have demonstrated the involvement of mtDNA damage and leakage in the pathological mechanisms underlying various diseases including infectious diseases, metabolic inflammation, and immune disorders. Consequently, comprehensive investigation of mtDNA can elucidate the pathological mechanisms underlying numerous diseases. The prevention of mtDNA damage and leakage has emerged as a novel approach to disease treatment, and mtDNA has emerged as a promising target for drug development. This article provides a comprehensive review of the mechanisms underlying mtDNA-induced inflammation, its association with various diseases, and the methods used for its detection.


Assuntos
DNA Mitocondrial , Inflamação , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Inflamação/metabolismo , Inflamação/genética , Animais , Dano ao DNA , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
3.
Phytomedicine ; 124: 155285, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185065

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), carries a high risk of cirrhosis and hepatocellular carcinoma. With the increasing incidence of NASH, the accompanying medical burden is also increasing rapidly, so the development of safe and reliable drugs is urgent. Formononetin (FMNT) has a variety of pharmacological effects such as antioxidant and anti-inflammation, and plays a major role in regulating lipid metabolism, reducing hepatic steatosis and so on, but the mechanism for alleviating NASH is unclear. MATERIALS AND METHODS: We firstly established a mouse model on NASH through methionine-choline deficient (MCD) diet to investigate the improvement of FMNT as well as the effects of fatty acid ß oxidation and SIRT1/PGC-1α/PPARα pathway. Then, we explored the mechanisms of FMNT regulation in SIRT1/PGC-1α/PPARα pathway and fatty acid ß oxidation based on genes silencing of SIRT1 and PGC1A. In addition, SIRT1 agonist (SRT1720) and inhibitor (EX527) were used to verify the mechanism of FMNT on improvement of NASH. RESULTS: Our study found that after FMNT intervention, activities of ALT and AST and TG level were improved, and liver function and hepatocellular steatosis on NASH mice were significantly improved. The detection of ß oxidation related indicators showed that FMNT intervention up-regulated FAO capacity, level of carnitine, and the levels of ACADM and CPT1A. The detection of factors related to the SIRT1/PGC-1α/PPARα pathway showed that FMNT activated and promoted the expression of SIRT1/PGC-1α/PPARα pathway, including up-regulating the expression level of SIRT1, improving the activity of SIRT1, promoting the deacetylation of PGC-1α, and promoting the transcriptional activity of PPARα. Furthermore, after genes silencing of SIRT1 and PGC1A, we found that FMNT intervention could not alleviate NASH, including improvement of hepatocellular steatosis, enhancement of ß oxidation, and regulation of SIRT1/PGC-1α/PPARα pathway. Afterwards, we used SRT1720 as a positive control, and the results indicated that FMNT and SRT1720 intervention had no significant difference on improving hepatocellular steatosis and promoting fatty acid ß oxidation. Besides, we found that when EX527 intervention inhibited expression of SIRT1, the improvement of FMNT on NASH was weakened or even disappeared. CONCLUSION: In summary, our results demonstrated that FMNT intervention activated SIRT1/PGC-1α/PPARα pathway to promote fatty acid ß oxidation and regulate lipid metabolism in liver, ultimately improved hepatocellular steatosis on NASH mice.


Assuntos
Isoflavonas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Sirtuína 1/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/patologia , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL
4.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4231-4236, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802791

RESUMO

Traditional Chinese medicine(TCM) formula granules are highly praised for the advanced, convenient, and modern use of Chinese medicinal materials. The safety of TCM formula granules has long been a concern of regulatory authorities and the medical industry. A multi-center, prospective, open, non-interventional, and centralized monitoring was carried out for the patients treated with TCM formula granules in 252 medical institutions from February 5, 2020 to April 19, 2022. All the case data and the incidence of adverse drug reactions/events were recorded. This study evaluated the safety of TCM formula granules, aiming to provide a reference for the clinically use. A total of 20 547 patients were included in this study. Four adverse events were recorded, including 3 adverse drug reactions with an adverse drug reaction rate of 0.015%, all of which occurred in the digestive system. There was no serious adverse event, and no factors related to adverse drug reactions/events were identified. The incidence of adverse drug reactions/events associated with China Resources Sanjiu Medical & Pharmaceutical Co., Ltd. TCM formula granules was rare, which proved their safety in clinical use. A comprehensive data mining and objective analysis was carried out for the medicines with high frequency in TCM formula granules, the commonly used medicine pairs and combinations, and departmental medication. The drug use characteristics, prescription rules, and departmental use of TCM formula granules were summarized, which can shed light on the prescription compatibility and clinical application.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Medicamentos de Ervas Chinesas , Humanos , Medicina Tradicional Chinesa/efeitos adversos , Medicamentos de Ervas Chinesas/efeitos adversos , Estudos Prospectivos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , China
5.
Phytomedicine ; 118: 154937, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393831

RESUMO

BACKGROUND: Polygala japonica Houtt. (PJ) has been demonstrated with several biological potentials such as lipid-lowering and anti-inflammatory effects. However, the effects and mechanisms of PJ on nonalcoholic steatohepatitis (NASH) remain unclear. PURPOSE: The aim of this study was to evaluate the effects of PJ on NASH and illustrate the mechanism based on modulating gut microbiota and host metabolism. MATERIALS AND METHODS: NASH mouse model was induced using methionine and choline deficient (MCD) diet and orally treated with PJ. The therapeutic, anti-inflammatory, and anti-oxidative effects of PJ on mice with NASH were firstly assessed. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of PJ on the metabolites in liver and feces were explored by untargeted metabolomics. RESULTS: The results indicated that PJ could improve hepatic steatosis, liver injury, inflammatory response, and oxidative stress in NASH mice. PJ treatment also affected the diversity of gut microbiota and changed the relative abundances of Faecalibaculum. Lactobacillus, Muribaculaceae, Dubosiella, Akkermansia, Lachnospiraceae_NK4A136_group, and Turicibacter in NASH mice. In addition, PJ treatment modulated 59 metabolites both in liver and feces. Metabolites involved in histidine, and tryptophan metabolism pathways were identified as the key metabolites according to the correlation analysis between differential gut microbiota and metabolites. CONCLUSION: Our study demonstrated the therapeutic, anti-inflammatory and anti-oxidative potentials of PJ on NASH. The mechanisms of PJ treatment were related to the improvement of gut microbiota dysbiosis and the regulation of histidine and tryptophan metabolism.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Polygala , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polygala/genética , RNA Ribossômico 16S , Histidina/metabolismo , Histidina/farmacologia , Histidina/uso terapêutico , Triptofano/metabolismo , Triptofano/farmacologia , Triptofano/uso terapêutico , Fígado , Fezes , Camundongos Endogâmicos C57BL
6.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2138-2145, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282902

RESUMO

The powder modification technology was used to improve the powder properties and microstructure of Dioscoreae Rhizoma extract powder, thereby solving the problem of poor solubility of Dioscoreae Rhizoma formula granules. The influence of modifier dosage and grinding time on the solubility of Dioscoreae Rhizoma extract powder was investigated with the solubility as the evaluation index, and the optimal modification process was selected. The particle size, fluidity, specific surface area, and other powder properties of Dioscoreae Rhizoma extract powder before and after modification were compared. At the same time, the changes in the microstructure before and after modification was observed by scanning electron microscope, and the modification principle was explored by combining with multi-light scatterer. The results showed that after adding lactose for powder modification, the solubility of Dioscoreae Rhizoma extract powder was significantly improved. The volume of insoluble substance in the liquid of modified Dioscoreae Rhizoma extract powder obtained by the optimal modification process was reduced from 3.8 mL to 0 mL, and the particles obtained by dry granulation of the modified powder could be completely dissolved within 2 min after being exposed to water, without affecting the content of its indicator components adenosine and allantoin. After modification, the particle size of Dioscoreae Rhizoma extract powder decreased significantly, d_(0.9) decreased from(77.55±4.57) µm to(37.91±0.42) µm, the specific surface area and porosity increased, and the hydrophilicity improved. The main mechanism of improving the solubility of Dioscoreae Rhizoma formula granules was the destruction of the "coating membrane" structure on the surface of starch granules and the dispersion of water-soluble excipients. This study introduced powder modification technology to solve the solubility problem of Dioscoreae Rhizoma formula granules, which provided data support for the improvement of product quality and technical references for the improvement of solubility of other similar varieties.


Assuntos
Tecnologia Farmacêutica , Tecnologia , Pós , Solubilidade , Extratos Vegetais , Tamanho da Partícula
7.
Phytomedicine ; 113: 154733, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36870307

RESUMO

BACKGROUND: Jiang-Tang-San-Huang (JTSH) pill, a traditional Chinese medicine (TCM) prescription, has long been applied to clinically treat type 2 diabetes mellitus (T2DM), while the underlying antidiabetic mechanism remains unclarified. Currently, it is believed that the interaction between intestinal microbiota and bile acids (BAs) metabolism mediates host metabolism and promotes T2DM. PURPOSE: To elucidate the underlying mechanisms of JTSH for treating T2DM with animal models. METHODS: In this study, male SD rats received high-fat diet (HFD) and streptozotocin (STZ) injection to induce T2DM and were treated with different dosages (0.27, 0.54 and 1.08 g/kg) of JTSH pill for 4 weeks; metformin was given as a positive control. Alterations of gut microbiota and BA profiles in the distal ileum were assessed by 16S ribosomal RNA gene sequencing and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), respectively. Additionally, we conducted quantitative Real Time-PCR and western blotting to determine the mRNA and protein expression levels of intestinal farnesoid X receptor (FXR), fibroblast growth factor 15 (FGF15), Takeda G-protein-coupled receptor 5 (TGR5) and glucagon-like peptide 1 (GLP-1) as well as hepatic cytochrome P450, family 7, subfamily a, poly-peptide 1 (CYP7A1) and cytochrome P450, family 8, subfamily b, poly-peptide 1 (CYP8B1), which are involved in BAs metabolism and enterohepatic circulation. RESULTS: Here, the results revealed that JTSH treatment significantly ameliorated hyperglycaemia, insulin resistance (IR), hyperlipidaemia, and pathological changes in the pancreas, liver, kidney and intestine and reduced the serum levels of pro-inflammatory cytokines in T2DM model rats. 16S rRNA sequencing and UPLC-MS/MS showed that JTSH treatment could modulate gut microbiota dysbiosis by preferentially increasing bacteria (e.g., Bacteroides, Lactobacillus, Bifidobacterium) with bile-salt hydrolase (BSH) activity, which might in turn lead to the accumulation of ileal unconjugated BAs (e.g., CDCA, DCA) and further upregulate the intestinal FXR/FGF15 and TGR5/GLP-1 signaling pathways. CONCLUSION: The study demonstrated that JTSH treatment could alleviate T2DM by modulating the interaction between gut microbiota and BAs metabolism. These findings suggest that JTSH pill may serve as a promising oral therapeutic agent for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cromatografia Líquida , RNA Ribossômico 16S , Ácidos e Sais Biliares/metabolismo , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Fígado/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo
8.
Front Pharmacol ; 13: 979400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147321

RESUMO

Jian-Ti-Kang-Yi decoction (JTKY) is widely used in the treatment of COVID-19. However, the protective mechanisms of JTKY against pneumonia remain unknown. In this study, polyinosinic-polycytidylic acid (poly(I:C)), a mimic of viral dsRNA, was used to induce pneumonia in mice; the therapeutic effects of JTKY on poly(I:C)-induced pneumonia model mice were evaluated. In addition, the anti-inflammatory and anti-oxidative potentials of JTKY were also investigated. Lastly, the metabolic regulatory effects of JTKY in poly(I:C)-induced pneumonia model mice were studied using untargeted metabolomics. Our results showed that JTKY treatment decreased the wet-to-dry ratio in the lung tissue, total protein concentration, and total cell count of the bronchoalveolar lavage fluid (BALF). Hematoxylin and Eosin (HE) and Masson staining indicated that the JTKY treatment alleviated the pathological changes and decreased the fibrotic contents in the lungs. JTKY treatment also decreased the expression of pro-inflammatory cytokines [interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α)] and increased the levels of immunomodulatory cytokines (IL-4 and IL-10) in the BALF and serum. Flow cytometry analysis showed that the JTKY treatment lowered the ratio of CD86+/CD206+ macrophages in the BALF, decreased inducible nitric oxide synthase (iNOS) level, and increased arginase 1 (Arg-1) level in lung. JTKY also lowered CD11b+Ly6G+ neutrophils in BALF and decreased myeloperoxidase (MPO) activity in lung. Moreover, it also elevated superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and decreased methane dicarboxylic aldehyde (MDA) level in lung. Untargeted metabolomic analysis showed that the JTKY treatment could affect 19 metabolites in lung, such as L-adrenaline, L-asparagine, ornithine, and alpha-ketoglutaric acid. These metabolites are associated with the synthesis and degradation of ketone bodies, butanoate, alanine, aspartate, and glutamate metabolism, and tricarboxylic acid (TCA) cycle processes. In conclusion, our study demonstrated that treatment with JTKY ameliorated poly(I:C)-induced pneumonia. The mechanism of action of JTKY may be associated with the inhibition of the inflammatory response, the reduction of oxidative stress, and the regulation of the synthesis and degradation of ketone bodies, TCA cycle, and metabolism of alanine, aspartate, glutamate, and butanoate processes in lung.

9.
Artigo em Inglês | MEDLINE | ID: mdl-35865338

RESUMO

Viral pneumonia is widespread, progresses rapidly, and has a high mortality rate. Developing safe and effective therapies to treat viral pneumonia can minimize risks to public health and alleviate pressures on the associated health systems. Xiao-Chai-Hu (XCH) decoction can be used in the treatment of viral pneumonia. However, the mechanisms of XCH on viral pneumonia remain unclear. In this study, poly (I:C) was used to establish a mouse model of viral pneumonia, and the therapeutic effects of XCH on viral pneumonia were assessed. Furthermore, we evaluated the effects of XCH on inflammatory response. Lastly, untargeted metabolomics were used to study the metabolic regulatory mechanisms of XCH on viral pneumonia model mice. Our results showed that XCH treatment decreased the wet/dry ratio in lung tissue, total protein concentration, and total cell count in bronchoalveolar lavage fluid (BALF). H&E staining indicated that XCH treatment alleviated the pathological changes in lung. Moreover, XCH treatment decreased the levels of proinflammatory cytokines (IL-1ß, IL-6, and TNF-α) and lowered the ratio of CD86+/CD206+ macrophages and CD11b+LY6G+ neutrophils in BALF. XCH treatment also decreased the myeloperoxidase (MPO) and reduced the phosphorylations of PI3K, AKT, and NF-κB p65 in lung. Serum untargeted metabolomics analysis showed that XCH treatment could affect 18 metabolites in serum such as creatine, hydroxyproline, cortisone, hydrocortisone, corticosterone, hypotaurine, and taurine. These metabolites were associated with arginine and proline metabolism, steroid hormone biosynthesis, and taurine and hypotaurine metabolism processes. In conclusion, our study demonstrated that treatment with XCH can ameliorate viral pneumonia and reduce inflammatory response in viral pneumonia. The mechanism of action of XCH in the treatment of viral pneumonia may be associated with inhibiting the activation of PI3K/AKT/NF-κB signaling pathway in lung and regulating arginine and proline metabolism, steroid hormone biosynthesis, and taurine and hypotaurine metabolism in serum.

10.
Front Pharmacol ; 13: 891851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784698

RESUMO

Qing-Wen-Jie-Re mixture (QWJR) has been used in the treatment of the coronavirus disease 2019 (COVID-19) in China. However, the protective mechanisms of QWJR on viral pneumonia remain unclear. In the present study, we first investigated the therapeutic effects of QWJR on a rat viral pneumonia model established by using polyinosinic-polycytidylic acid (poly (I:C)). The results indicated that QWJR could relieve the destruction of alveolar-capillary barrier in viral pneumonia rats, as represented by the decreased wet/dry weight (W/D) ratio in lung, total cell count and total protein concentration in bronchoalveolar lavage fluid (BALF). Besides, QWJR could also down-regulate the expression of inflammatory factors such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß and IL-6. More M1-type macrophage polarization was detected by calculating CD86+ cells and CD206+ cells and validated by the decline of inducible nitric oxide synthase (iNOS) and elevated arginase-1 (Arg-1) in lung. Finally, serum untargeted metabolomics analysis demonstrated that QWJR might take effect through regulating arginine metabolism, arachidonic acid (AA) metabolism, tricarboxylic acid (TCA) cycle, nicotinate and nicotinamide metabolism processes.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35845577

RESUMO

Jian-Gan-Xiao-Zhi decoction (JGXZ) has demonstrated beneficial effects on nonalcoholic fatty liver disease (NAFLD). However, the mechanisms by which JGXZ improve NAFLD are still unclear. Methods. In this study, we first used a high-fat diet (HFD) to establish a NAFLD rat model to clarify the therapeutic effect of JGXZ on NAFLD. Secondly, we used network pharmacology to predict the potential targets of JGXZ on NAFLD, and then the key targets obtained from network pharmacology were verified. Finally, we used untargeted metabolomics to study the metabolic regulatory mechanism of JGXZ. Results. JGXZ treatment could decrease body weight and ameliorate dyslipidemia in NAFLD model rats. H&E and oil red O staining indicated that JGXZ reduced steatosis and infiltration of inflammatory cells in the liver. In addition, network pharmacology research found that the potential targets of JGXZ on NAFLD pathway were mainly associated with improving oxidative stress, apoptosis, inflammation, lipid metabolism disorders, and insulin resistance. Further experimental verification confirmed that JGXZ could inhibit inflammation and improve oxidative stress, insulin resistance, and lipid metabolism disorders. Serum untargeted metabolomics analyses indicated that the JGXZ in the treatment of NAFLD may work through the linoleic acid metabolism, alpha-linolenic acid metabolism, tryptophan metabolism, and glycerophospholipid metabolism pathways. Conclusions. In conclusion, this study found that JGXZ has an ameliorative effect on NAFLD, and JGXZ alleviates the inflammatory response and oxidative stress and lipid metabolism disorders in NAFLD rats. The mechanism of action of JGXZ in the treatment of NAFLD may be related to the regulation of linoleic acid metabolism, tryptophan metabolism, alpha-linolenic acid metabolism, and glycerophospholipid metabolism.

12.
Food Funct ; 13(12): 6623-6635, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35635367

RESUMO

Evodiamine (EVO) is an alkaloid extracted from Evodia rutaecarpa and has various pharmacological activities, including hypolipidemic, anti-inflammatory, anti-infective, and antitumor effects. However, the therapeutic effects of EVO on type 2 diabetes mellitus (T2DM) and the possible mechanisms remain unknown. In this study, we used a T2DM rat model using a high-fat diet (HFD) combined with streptozotocin (STZ) injections followed by treatment with EVO. First, we evaluated the therapeutic effects of EVO on T2DM rats, following which we evaluated the anti-inflammatory and anti-oxidative effects of EVO on T2DM rats. Finally, we analyzed the metabolic regulatory mechanism of EVO in T2DM rats using an untargeted metabolomics approach. The results showed that EVO treatment alleviated the hyperglycemia, hyperlipidemia, insulin resistance (IR), and pathological changes of the liver, pancreas and kidneys in T2DM rats. Moreover, EVO treatment ameliorated the oxidative stress and decreased the serum levels of pro-inflammatory cytokines in T2DM model rats. Serum untargeted metabolomics analysis indicated that the EVO treatment affected the levels of 26 metabolites, such as methionine, citric acid, cholesterol, taurocholic acid, pilocarpine, adrenic acid, and other metabolites. These metabolites were mainly related to the amino sugar and nucleotide sugar metabolism, arginine biosynthesis, arginine and proline metabolism, glutathione metabolism, and tryptophan metabolism pathways. In conclusion, EVO can reduce blood glucose and improve oxidative stress and inflammatory response in T2DM rats. These functions are related to the regulation of amino sugar and nucleotide sugar metabolism, arginine biosynthesis, arginine and proline metabolism, glutathione metabolism, and tryptophan metabolism pathways.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Amino Açúcares/uso terapêutico , Animais , Arginina , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glutationa/uso terapêutico , Metabolômica , Nucleotídeos , Prolina , Quinazolinas , Ratos , Estreptozocina , Triptofano
13.
Zhongguo Zhong Yao Za Zhi ; 47(3): 603-610, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35178942

RESUMO

Essential oils from Chinese medicine are popular in the fields such as medicine, food, and cosmetics because of their unique biological characteristics. However, since essential oils are lipophilic compounds with high volatility, poor stability, and strong irritation, various preparation technologies need to be employed to improve stability, reduce irritation, and increase bioavailability. At present, a variety of preparation technologies have been applied to the encapsulation of essential oils. Various encapsulation strategies are formed because of different delivery systems featured with multiple principles and characteristics and are widely used to improve the stability of essential oils. Essential oils of Chinese medicine are widely used in the medical field, and they are under continuous innovation and development in clinical research, the pharmaceutical industry, medical products, etc. The present study summarized various delivery systems that could improve the stability of essential oils and reviewed the applications of essential oils encapsulated in the delivery systems in the medical field to provide re-ferences for the improvement of stability of essential oils and their safety, efficiency, and wide use in the medical field.


Assuntos
Óleos Voláteis , China
14.
Front Cell Infect Microbiol ; 11: 748872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938667

RESUMO

Pi-Dan-Jian-Qing decoction (PDJQ) can been used in the treatment of type 2 diabetes mellitus (T2DM) in clinic. However, the protective mechanisms of PDJQ on T2DM remain unknown. Recent studies have shown that the changes in gut microbiota could affect the host metabolism and contribute to progression of T2DM. In this study, we first investigated the therapeutic effects of PDJQ on T2DM rats. 16S rRNA sequencing and untargeted metabolomics analyses were used to investigate the mechanisms of action of PDJQ in the treatment of T2DM. Our results showed that PDJQ treatment could improve the hyperglycemia, hyperlipidemia, insulin resistance (IR) and pathological changes of liver, pancreas, kidney, and colon in T2DM rats. PDJQ could also decrease the levels of pro-inflammatory cytokines and inhibit the oxidative stress. 16S rRNA sequencing showed that PDJQ could decrease the Firmicutes/Bacteroidetes (F to B) ratio at the phylum level. At the genus level, PDJQ could increase the relative abundances of Lactobacillus, Blautia, Bacteroides, Desulfovibrio and Akkermansia and decrease the relative abundance of Prevotella. Serum untargeted metabolomics analysis showed that PDJQ could regulate tryptophan metabolism, histidine metabolism, tricarboxylic acid (TCA) cycle, phenylalanine, tyrosine and tryptophan biosynthesis and tyrosine metabolism pathways. Correlation analysis indicated that the modulatory effects of PDJQ on the tryptophan metabolism, histidine metabolism and TCA cycle pathways were related to alterations in the abundance of Lactobacillus, Bacteroides and Akkermansia. In conclusion, our study revealed the various ameliorative effects of PDJQ on T2DM, including improving the liver and kidney functions and alleviating the hyperglycemia, hyperlipidemia, IR, pathological changes, oxidative stress and inflammatory response. The mechanisms of PDJQ on T2DM are likely linked to an improvement in the dysbiosis of gut microbiota and modulation of tryptophan metabolism, histamine metabolism, and the TCA cycle.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglicemia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Disbiose , RNA Ribossômico 16S/genética , Ratos
15.
Zhongguo Zhong Yao Za Zhi ; 46(8): 2104-2111, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33982526

RESUMO

The aim of this study was to elucidate the mechanism of nuciferine on alleviating obesity based on modulating gut microbiota, ameliorating chronic inflammation, and improving gut permeability. In this study, the obese model mice were induced by high-fat diet and then randomly divided into model group, and nuciferine group; some other mice of the same week age were fed with normal diet as normal group. In the modeling process, the mice were administered intragastrically(ig) for 12 weeks. In the course of both modeling and treatment, the body weight and food intake of mice in each group were measured weekly. After modeling and treatment, the Lee's index, weight percentage of inguinal subcutaneous fat, and the level of blood lipid in each group were measured. The pathological changes of adipocytes were observed by HE staining to evaluate the efficacy of nuciferine treatment in obese model mice. 16 S rRNA sequencing analysis was conducted to study the changes in diversity and abundance of gut microbiota after nuciferine treatment. Enzyme-linked immunosorbent assay(ELISA) and quantitative Real-time polymerase chain reaction(qPCR) were used to detect the levels of inflammatory factors interleukin-6(IL-6), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α) and the expression of related genes in adipose tissue of mice in each group, so as to evaluate the effect of nuciferine on chronic inflammation of mice in obese model group. qPCR was used to detect the expression of occludin and tight junction protein 1(ZO-1)gene in colon tissure, so as to evaluate the effect of nuciferine on intestinal permeability of mice in obese group. Nuciferine decreased the body weight of obese mice, Lee's index, weight percentage of inguinal subcutaneous fat(P<0.05), and reduced the volume of adipocytes, decreased the level of total cholesterol(TC), triglyceride(TG), and low density lipoprotein cholesterol(LDL-C)(P<0.05) in serum, improved dysbacteriosis, increased the relative abundance of Alloprevotella, Turicibacter, and Lactobacillus, lowered the relative abundance of Helicobac-ter, decreased the expression of inflammatory cytokines IL-6, IL-1ß, and TNF-α genes in adipose tissue(P<0.01), decreased the levels of inflammatory cytokines IL-6, IL-1ß, and TNF-α in serum(P<0.05), and increased the expression of occludin and ZO-1 genes related to tight junction in colon tissue(P<0.01). Nuciferine could treat obesity through modulating gut microbiota, decreasing gut permeability and ameliorating inflammation.


Assuntos
Microbioma Gastrointestinal , Animais , Aporfinas , Dieta Hiperlipídica/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-33824675

RESUMO

BACKGROUND: Jian-Gan-Xiao-Zhi decoction (JGXZ), composed of Salvia miltiorrhiza Bunge, Panax notoginseng, Curcuma zedoaria, and other 9 types of herbs, has demonstrated beneficial effects on nonalcoholic fatty liver disease (NAFLD). However, the mechanisms behind JGXZ's impact on NAFLD remain unknown. METHODS: In this study, a NAFLD rat model induced by a high-fat diet (HFD) received oral treatment of JGXZ (8 or 16 g crude herb/kg) for 12 weeks. The therapeutic effects of JGXZ on NAFLD model rats were investigated through blood lipid levels and pathological liver changes. 16S rRNA analysis was used to study the changes in gut microbiota after JGXZ treatment. The expressions of occludin and tight junction protein 1 (ZO-1) in the colon were investigated using immunostaining to study the effects of JGXZ on gut permeability. The anti-inflammatory effects of JGXZ were also studied through measuring the levels of IL-1ß, IL-6, and TNF-α in the serum and liver. RESULTS: JGXZ treatment could decrease body weight and ameliorate dyslipidemia in NAFLD model rats. H&E and Oil Red O staining indicated that JGXZ reduced steatosis and infiltration of inflammatory cells in the liver. 16S rRNA analysis showed that JGXZ impacted the diversity of gut microbiota, decreasing the Firmicutes-to-Bacteroidetes ratio, and increasing the relative abundance of probiotics, such as Alloprevotella, Lactobacillus, and Turicibacter. Gut permeability evaluation found that the expressions of ZO-1 and occludin in the colon were increased after JGXZ treatment. Moreover, JGXZ treatment could decrease the levels of IL-1ß, IL-6, and TNF-α in the serum and liver. CONCLUSIONS: Our study illustrated that JGXZ could ameliorate NAFLD through modulating gut microbiota, decreasing gut permeability, and alleviating inflammatory response.

17.
Front Pharmacol ; 11: 584090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328987

RESUMO

The dysbiosis in gut microbiota could affect host metabolism and contribute to the development of nonalcoholic fatty liver disease (NAFLD). Da-Chai-Hu decoction (DCH) has demonstrated protective effects on NAFLD, however, the exact mechanisms remain unclear. In this study, we established a NAFLD rat model using a high fat diet (HFD) and provided treatment with DCH. The changes in gut microbiota post DCH treatment were then investigated using 16S rRNA sequencing. Additionally, serum untargeted metabolomics were performed to examine the metabolic regulations of DCH on NAFLD. Our results showed that DCH treatment improved the dyslipidemia, insulin resistance (IR) and ameliorated pathological changes in NAFLD model rats. 16S rRNA sequencing and untargeted metabolomics showed significant dysfunction in gut microbiota community and serum metabolites in NAFLD model rats. DCH treatment restored the dysbiosis of gut microbiota and improved the dysfunction in serum metabolism. Correlation analysis indicated that the modulatory effects of DCH on the arachidonic acid (AA), glycine/serine/threonine, and glycerophospholipid metabolic pathways were related to alterations in the abundance of Romboutsia, Bacteroides, Lactobacillus, Akkermansia, Lachnoclostridium and Enterobacteriaceae in the gut microflora. In conclusion, our study revealed the ameliorative effects of DCH on NAFLD and indicated that DCH's function on NAFLD may link to the improvement of the dysbiosis of gut microbiota and the modulation of the AA, glycerophospholipid, and glycine/serine/threonine metabolic pathways.

18.
Front Pharmacol ; 11: 858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581811

RESUMO

Metabolomic analysis has been used to characterize the effects and mechanisms of drugs for nonalcoholic fatty liver disease (NAFLD) at the metabolic level. Nuciferine is an active component derived from folium nelumbinis and has been demonstrated to have beneficial effects on a high-fat diet (HFD) induced hepatic steatosis model. However, the effect of the altered metabolites of nuciferine on NAFLD has not yet been elucidated. In this study, we established a NAFLD rat model using HFD and treated with nuciferine. The lipid content levels, pro-inflammatory cytokines, and oxidative stress were investigated to access the therapeutic effects of nuciferine. Additionally, the metabolic regulatory mechanisms of nuciferine on NAFLD were analyzed using untargeted metabolomics. Gene expression of the key enzymes related to the changed metabolic pathways following nuciferine intervention was also investigated. The results showed that nuciferine treatment significantly reduced the body weight, levels of lipids, and liver enzymes in the blood and improved the hepatic steatosis in the NAFLD rat model. Nuciferine treatment also increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreased the levels of methane dicarboxylic aldehyde (MDA) in the liver. Nuciferine treatment decreased the serum levels of interleukin (IL)-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) and upregulated the gene expression of IL-6, IL-1ß, and TNF-α in the liver. Metabolomic analysis indicated a metabolism disorder in the NAFLD rat model reflected in a dysfunction of the glycerophospholipid, linoleic acid, alpha-linolenic acid, arginine and proline metabolism. Conversely, treatment with nuciferine improved the metabolic disorder in the NAFLD rat model. Nuciferine treatment also regulated the gene expression of key enzymes related to the glycerophospholipid, linoleic acid, and alpha-linolenic acid metabolism pathways in the liver. In conclusion, our study demonstrated an amelioration of the metabolic disorders following nuciferine treatment in NAFLD rat model. Our study contributes to the understanding of the effects and mechanisms of drugs for complex diseases using metabolomic analysis and experimental approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA