Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1391697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741730

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV exhibits genetic diversity and complexity in terms of immune responses, posing challenges for eradication. The nucleocapsid (N) protein of PRRSV, an alkaline phosphoprotein, is important for various biological functions. This review summarizes the structural characteristics, genetic evolution, impact on PRRSV replication and virulence, interactions between viral and host proteins, modulation of host immunity, detection techniques targeting the N protein, and progress in vaccine development. The discussion provides a theoretical foundation for understanding the pathogenic mechanisms underlying PRRSV virulence, developing diagnostic techniques, and designing effective vaccines.

2.
Front Vet Sci ; 10: 1171750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130437

RESUMO

Classical swine fever (CSF) is an infectious disease caused by Classical swine fever virus (CSFV), which is characterized by depression, high fever, extensive skin bleeding, leukopenia, anorexia, alternating constipation, and diarrhea. Hemorrhagic infarction of the spleen is the main characteristic pathological change following CSFV infection. Large-scale outbreaks of CSF are rare in China and are mainly distributed regionally. The clinical symptoms of CSF are not obvious, and show variation from typical to atypical symptoms, which makes diagnosis based on clinical symptoms and pathology challenging. In recent years, the incidence of CSF-immunized pig farms in China has increased and new CSFV gene subtypes have appeared, posing new challenges to the prevention and control of CSF in China. Changes in metabolites caused by viral infection reflect the pathogenic process. Metabonomics can reveal the trace metabolites of organisms; however, plasma metabonomics of CSFV-infected pigs have rarely been investigated. Therefore, we used an established pig CSFV infection model to study changes in plasma metabolites. The results showed significant differences in forty-five plasma metabolites at different time periods after CSFV infection in pigs, with an increase in twenty-five metabolites and a decrease in twenty metabolites. These changed metabolites were mainly attributed to the tricarboxylic acid cycle, amino acid cycle, sugar metabolism, and fat metabolism. Thirteen metabolic pathways changed significantly in CSFV-infected pigs, including tricarboxylic acid cycle, inositol phosphate metabolism, glycine, serine and threonine metabolism,lysine degradation, alanine, aspartate and glutamic acid metabolism, pantothenate and CoA biosynthesis, ß-alanine metabolism, lysine degradation, arginine and proline metabolism, glycerolipid metabolism, phenylalanine metabolism, arachidonic acid metabolism, linoleic acid metabolism. Among these, changes in fatty acid biosynthesis and metabolism occurred at all time periods post-infection. These results indicate that CSFV infection in pigs could seriously alter metabolic pathways.

3.
Vet Sci ; 10(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37624278

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease in the pig industry, but its pathogenesis is not yet fully understood. The disease is caused by the PRRS virus (PRRSV), which primarily infects porcine alveolar macrophages and disrupts the immune system. Unfortunately, there is no specific drug to cure PRRS, so vaccination is crucial for controlling the disease. There are various types of single and combined vaccines available, including live, inactivated, subunit, DNA, and vector vaccines. Among them, live vaccines provide better protection, but cross-protection is weak. Inactivated vaccines are safe but have poor immune efficacy. Subunit vaccines can be used in the third trimester of pregnancy, and DNA vaccines can enhance the protective effect of live vaccines. However, vector vaccines only confer partial protection and have not been widely used in practice. A PRRS vaccine that meets new-generation international standards is still needed. This manuscript provides a comprehensive review of the advantages, disadvantages, and applicability of live-attenuated, inactivated, subunit, live vector, DNA, gene-deletion, synthetic peptide, virus-like particle, and other types of vaccines for the prevention and control of PRRS. The aim is to provide a theoretical basis for vaccine research and development.

4.
Exp Appl Acarol ; 80(3): 339-348, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31925589

RESUMO

Ixodid ticks transmit many obligate intracellular Rickettsial species. Several previous studies have identified Rickettsia species in the northeastern and southern part of China, but few reports on the prevalence of infection of spotted fever group Rickettsiae (SFGR) in ticks in southwest China are available. Here, we investigated SFGR in 394 adult ticks of five species including Dermacentor nuttalli, Dermacentor silvarum, Haemaphysalis longicornis, Ixodes sinensis and Ixodes persulcatus, collected in the border region between China and Burma in Yunnan Province. PCR was used to detect the presence of the citrate synthase (gltA) gene of Rickettsia species. SFGR was found in 12.1% (15/124) of I. persulcatus ticks, which was significantly higher than the 7.2% (7/97) positive D. nuttalli, 5.4% (3/56) D. silvarum, 5.6% (4/72) H. longicornis and 4.4 (2/45) I. sinensis. A portion of the gltA and ompA gene data subjected to phylogenetic analysis revealed that the detected SFGR clustered into two species, Rickettsia raoultii and the new Rickettsia species Candidatus Rickettsia jingxinensis. Detection of both Rickettsia spp. in this region indicates a potential public health threat posed by SFGR infection in Yunnan Province.


Assuntos
Ixodidae/microbiologia , Filogenia , Rickettsia/isolamento & purificação , Animais , China , Genes Bacterianos , Rickettsia/classificação , Rickettsiose do Grupo da Febre Maculosa
5.
Virus Res ; 250: 37-42, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29627479

RESUMO

Classical swine fever virus (CSFV) causes a highly lethal disease in pigs, which is characterized by immunosuppression. Leukopenia is known to be a possible mechanism of immunosuppression during CSFV infection. As a new and specialized form of cell death, pyroptosis is the key response of the innate immune system to pathogens, and is widely involved in the occurrence and development of infectious diseases. However, the relationship between CSFV and pyroptosis has not been explored. In this study, we investigated the occurrence of pyroptosis in pigs following CSFV infection. According to qRT-PCR assay results, the prevalence of this virus in peripheral lymphoid organs (tonsils, lymph nodes, and spleen) was much higher than that in other organs. Severe bleeding, necrosis, and a significant reduction in lymphocytes were found in the peripheral lymphoid organs of CSFV-infected pigs based on histological examination. In-depth studies showed that an increased ratio of deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells were present in the peripheral lymphoid organs of the CSFV-infected group according to immunohistochemistry. Meanwhile, the p10 subunit and activity of caspase-1, which is a regulator of pyroptosis, the N-terminal domain of gasdermin D, which is an executor of pyroptosis, and the cleavage and secretion of IL-1b, which is a product of pyroptosis were increased in the peripheral lymphoid organs of the CSFV-infected group. Together, these results demonstrated that pyroptosis is involved in CSFV-induced cell death in vivo, which provides a new understanding of the mechanism associated with lymphocyte depletion and immunosuppression in pigs infected with this virus.


Assuntos
Vírus da Febre Suína Clássica/patogenicidade , Peste Suína Clássica/patologia , Leucopenia/veterinária , Linfonodos/virologia , Piroptose , Animais , Caspase 1/metabolismo , Peste Suína Clássica/imunologia , Hospedeiro Imunocomprometido , Interleucina-1beta/imunologia , Leucócitos Mononucleares/virologia , Leucopenia/imunologia , Leucopenia/virologia , Linfonodos/citologia , Suínos
6.
Front Microbiol ; 8: 2129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163417

RESUMO

Classical swine fever (CSF) is an OIE-listed, highly contagious animal disease caused by classical swine fever virus (CSFV). The endoplasmic reticulum (ER) is an organelle in which the replication of many RNA viruses takes place. During viral infection, a series of events elicited in cells can destroy the ER homeostasis that cause ER stress and induce an unfolded protein response (UPR). In this study, we demonstrate that ER stress was induced during CSFV infection as several UPR-responsive elements such as XBP1(s), GRP78 and CHOP were up-regulated. Specifically, CSFV transiently activated IRE1 pathway at the initial stage of infection but rapidly switched off, likely due to the reduction in cytoplasm Ca2+ after viral incubation. Additionally, our data show that the ER stress induced by CSFV can promote CSFV production, which the IRE1 pathway play an important role in it. Evidence of ER stress in vivo was also confirmed by the marked elevation of GRP78 in CSFV-infected pig PBMC and tissues. Collectively, these data indicate that the ER stress was induced upon CSFV infection and that the activation of the IRE1 pathway benefits CSFV replication.

7.
Sci Rep ; 7(1): 13577, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051589

RESUMO

Lymphocyte depletion and immunosuppression are typical clinical characteristics of pigs infected with classical swine fever virus (CSFV). The apoptosis of virus-infected and bystander cells plays a role in the immunopathology of classical swine fever (CSF). Here, we offer the first evidence that autophagy is involved in apoptosis and death of T lymphocytes in the spleen of pigs infected with CSFV. Using immunohistochemical assays, we observed that more LC3II-positive cells appear in the T-cell zone of spleens. Spleen cell apoptosis was demonstrated using flow cytometry and TUNEL staining. Confocal immunofluorescence revealed that partial LC3II-positive cells were simultaneously TUNEL-positive. By cultivating spleen cells ex vivo, we demonstrated that the inhibition of autophagy by 3-MA treatment inhibited apoptosis and death of T lymphocytes caused by CSFV infection but did not have this effect  on B lymphocytes. Further observations demonstrated that uninfected cells in the spleen were also undergoing autophagy in vivo. In summary, these results linked autophagy with the apoptosis and cell death of splenic T cells, providing a new outlook to understand the mechanism of T lymphocyte depletion and immunosuppression during CSF.


Assuntos
Autofagia , Peste Suína Clássica/patologia , Baço/patologia , Linfócitos T/patologia , Linfócitos T/virologia , Animais , Apoptose , Morte Celular , Peste Suína Clássica/etiologia , Vírus da Febre Suína Clássica/patogenicidade , Baço/virologia , Suínos
8.
Front Microbiol ; 8: 862, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553280

RESUMO

Pestiviruses are highly variable RNA viruses. A growing number of novel pestiviruses has been discovered in domestic and wild species in the last two decades. Recently, a novel atypical porcine pestivirus (APPV) linked with the development of congenital tremor (CT) in neonatal pigs was described in Europe and the Americas. Here, the first Asian APPV complete polyprotein coding sequence was assembled from serum samples from newborn piglets affected with CT in Southern China, and termed APPV_GD. 14 organ samples from affected piglets were analyzed by quantitative RT-PCR (qRT-PCR) to investigate the tissue tropism of APPV, and 135 serum samples from pigs from 10 farms were used for identifying APPV in adult pigs. The highest genome loads were found in submaxillary lymph nodes, and PCR-based detection showed that APPV genomes were present in seven samples from five farms. A phylogenetic tree was constructed based on the full-length genomes of the pestiviruses, and APPV_GD appeared on a new branch with another newly discovered APPV. Nucleotide identity analysis demonstrated that APPV_GD shared the highest nucleotide sequence identity with a German APPV. Bayesian inference was performed using 25 partial sequences of the APPV NS5B gene (528 bp) isolated from four countries in recent years. According to this analysis, the most recent common ancestor (tMRCA) of the current APPV strains might have emerged in Germany and then diversified and spread to Asia, the Americas, and other countries in Europe. However, the result of bayesian inference could change when more APPV strains are isolated in the future. The present study is the first to report APPV in China and infers the origin and dissemination of the current strains of the virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA