RESUMO
BACKGROUND AND OBJECTIVE: Neuro-ophthalmologic symptoms and retinal changes have been increasingly observed following thalamic stroke, and there is mounting evidence indicating distinct alterations occurring in the vision-related functional network. However, the intrinsic correlations between these changes are not yet fully understood. Our objective was to explore the altered patterns of functional network connectivity and retina parameters, and their correlations with visual performance in patients with thalamic stroke. METHODS: We utilized resting-state functional MRI to obtain multi-modular functional connectivity (FC), and optical coherence tomography-angiography to measure various retina parameters, such as the retinal nerve fiber layer (RNFL), ganglion cell-inner plexiform layer (GCIPL), superficial vascular complex (SVC), and deep vascular complex. Visual acuity (VA) was used as a metric for visual performance. RESULTS: We included 46 patients with first-ever unilateral thalamic stroke (mean age 59.74 ± 10.02 years, 33 males). Significant associations were found between FC of attention-to-default mode and SVC, RNFL, and GCIPL, as well as between FC of attention-to-visual and RNFL (p < .05). Both RNFL and GCIPL exhibited significant associations with FC of visual-to-visual (p < .05). Only GCIPL showed an association with VA (p = .038). Stratified analysis based on a disease duration of 6 months revealed distinct and significant linking patterns in multi-modular FC and specific retina parameters, with varying correlations with VA in each subgroup. CONCLUSION: These findings provide valuable insight into the neural basis of the associations between brain network dysfunction and impaired visual performance in patients with thalamic stroke. Our novel findings have the potential to inform future targeted and individualized therapies. However, further comprehensive studies are necessary to validate our results.
Assuntos
Células Ganglionares da Retina , Acidente Vascular Cerebral , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Pressão Intraocular , Campos Visuais , Fibras Nervosas , Retina , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , MicrovasosRESUMO
AIMS: Cerebrovascular lesions in the primary visual cortex, the lateral geniculate nucleus, and the optic tract have been associated with retinal neurodegeneration via the retrograde degeneration (RD) mechanism. We aimed to use optical coherence tomography (OCT) to assess the effects of the strategic single subcortical infarction (SSI) location on retinal neurodegeneration and its longitudinal impacts. METHODS: Patients with SSI were enrolled and stratified by lesion location on cerebral MRI into the thalamic infarction group and extra-thalamic infarction group. Healthy controls from the native communities were also recruited. Retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer (GCIPL) were quantified using OCT. Generalized estimating equation (GEE) models were used for cross-sectional analyses and linear mixed models for longitudinal analyses. P < 0.05 was considered statistically significant. RESULTS: We included a total of 283 eyes from 149 SSI patients. Of these, 115 eyes of 60 patients with follow-up were included in the longitudinal analyses. Cross-sectionally, thalamic-infarction patients had reduced retinal thickness compared with extra-thalamic infarction patients after adjustment for age, gender, disease duration, and vascular risk factors (p = 0.026 for RNFL, and p = 0.026 for GCIPL). Longitudinally, SSI patients showed greater retinal thinning compared with healthy controls over time (p = 0.040 for RNFL, and p < 0.001 for GCIPL), and thalamic infarction patients exhibited faster rates of GCIPL thinning in comparison with extra-thalamic infarction patients (p < 0.001). CONCLUSION: Our study demonstrates a distinct effect of subcortical infarction lesion site on the retina both at the early stage of disease and at the 1-year follow-up time. These results present evidence of significant associations between strategic infarction locations and retinal neurodegeneration. It may provide novel insights for further research on RD in stroke patients and ultimately facilitate individualized recovery therapeutic strategy.