Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(8): e0088324, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39078157

RESUMO

Both Old World and New World hantaviruses are transmitted through rodents and can lead to hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome in humans without the availability of specific therapeutics. The square-shaped surface spikes of hantaviruses consist of four Gn-Gc heterodimers that are pivotal for viral entry into host cells and serve as targets for the immune system. Previously, a human-derived neutralizing monoclonal antibody, AH100, demonstrated specific neutralization against the Old World hantavirus, Hantaan virus. However, the precise mode binding of this neutralizing monoclonal antibody remains unclear. In the present study, we determined the structure of the Hantaan virus Gn-AH100 antigen-binding fragment complex and identified its epitope. Crystallography revealed that AH100 targeted the epitopes on domain A and b-ribbon and E3-like domain. Epitope mapping onto a model of the higher order (Gn-Gc)4 spike revealed its localization between neighboring Gn protomers, distinguishing this epitope as a unique site compared to the previously reported monoclonal antibodies. This study provides crucial insights into the structural basis of hantavirus neutralizing antibody epitopes, thereby facilitating the development of therapeutic antibodies.IMPORTANCEHantaan virus (HTNV) poses a significant threat to humans by causing hemorrhagic fever with renal syndrome with high mortality rates. In the absence of FDA-approved drugs or vaccines, it is urgent to develop specific therapeutics. Here, we elucidated the epitope of a human-derived neutralizing antibody, AH100, by determining the HTNV glycoprotein Gn-AH100 antigen-binding fragment (Fab) complex structure. Our findings revealed that the epitopes situated on the domain A and b-ribbon and E3-like domain of the HTNV Gn head. By modeling the complex structure in the viral lattice, we propose that AH100 neutralizes the virus by impeding conformational changes of Gn protomer, which is crucial for viral entry. Additionally, sequence analysis of all reported natural isolates indicated the absence of mutations in epitope residues, suggesting the potential neutralization ability of AH100 in diverse isolates. Therefore, our results provide novel insights into the epitope and the molecular basis of AH100 neutralization.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Mapeamento de Epitopos , Epitopos , Vírus Hantaan , Anticorpos Monoclonais/imunologia , Humanos , Vírus Hantaan/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Cristalografia por Raios X , Animais , Modelos Moleculares , Febre Hemorrágica com Síndrome Renal/imunologia , Febre Hemorrágica com Síndrome Renal/virologia , Testes de Neutralização
2.
Proc Natl Acad Sci U S A ; 121(24): e2400163121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830098

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with a high fatality rate of up to 30% caused by SFTS virus (SFTSV). However, no specific vaccine or antiviral therapy has been approved for clinical use. To develop an effective treatment, we isolated a panel of human monoclonal antibodies (mAbs). SF5 and SF83 are two neutralizing mAbs that recognize two viral glycoproteins (Gn and Gc), respectively. We found that their epitopes are closely located, and we then engineered them as several bispecific antibodies (bsAbs). Neutralization and animal experiments indicated that bsAbs display more potent protective effects than the parental mAbs, and the cryoelectron microscopy structure of a bsAb3 Fab-Gn-Gc complex elucidated the mechanism of protection. In vivo virus passage in the presence of antibodies indicated that two bsAbs resulted in less selective pressure and could efficiently bind to all single parental mAb-escape mutants. Furthermore, epitope analysis of the protective mAbs against SFTSV and RVFV indicated that they are all located on the Gn subdomain I, where may be the hot spots in the phleboviruses. Collectively, these data provide potential therapeutic agents and molecular basis for the rational design of vaccines against SFTSV infection.


Assuntos
Anticorpos Biespecíficos , Anticorpos Neutralizantes , Anticorpos Antivirais , Phlebovirus , Animais , Anticorpos Biespecíficos/imunologia , Camundongos , Anticorpos Neutralizantes/imunologia , Phlebovirus/imunologia , Humanos , Anticorpos Antivirais/imunologia , Glicoproteínas/imunologia , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Modelos Animais de Doenças , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA