Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834482

RESUMO

Cuticular waxes are mixtures of hydrophobic compounds covering land plant surfaces and play key roles in plant resistance to abiotic and biotic stresses. However, it is still not clear whether the epicuticular wax could protect the plants from infection by anthracnose, one of the most important plant diseases worldwide, which seriously infects sorghum and causes great yield loss. In this study, Sorghum bicolor L., an important C4 crop with high wax coverage, was selected to analyze the relationship between epicuticular wax (EW) and anthracnose resistance. In vitro analysis indicated that the sorghum leaf wax significantly inhibited the anthracnose mycelium growth of anthracnose on potato dextrose agar (PDA) medium, with the plaque diameter smaller than that grown on medium without wax. Then, the EWs were removed from the intact leaf with gum acacia, followed by the inoculation of Colletotrichum sublineola. The results indicated that the disease lesion was remarkably aggravated on leaves without EW, which showed decreased net photosynthetic rate and increased intercellular CO2 concentrations and malonaldehyde content three days after inoculation. Transcriptome analysis further indicated that 1546 and 2843 differentially expressed genes (DEGs) were regulated by C. sublineola infection in plants with and without EW, respectively. Among the DEG encoded proteins and enriched pathways regulated by anthracnose infection, the cascade of the mitogen-activated protein kinases (MAPK) signaling pathway, ABC transporters, sulfur metabolism, benzoxazinoid biosynthesis, and photosynthesis were mainly regulated in plants without EW. Overall, the EW increases plant resistance to C. sublineola by affecting physiological and transcriptome responses through sorghum epicuticular wax, improving our understanding of its roles in defending plants from fungi and ultimately benefiting sorghum resistance breeding.


Assuntos
Sorghum , Sorghum/genética , Melhoramento Vegetal , Ceras/química , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo
2.
Plant Physiol Biochem ; 159: 312-321, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33421907

RESUMO

Poa pratensis is a perennial turfgrass used worldwide. However, shortage of irrigation and drought induced by climate change adversely affect plant growth and turf quality. Cuticular wax covers plant aerial parts and plays important roles in decreasing plant water loss under drought-stressed conditions. Previous research proposed two candidate genes that were involved in wax very-long-chain alkane biosynthesis based on the transcriptome of Poa pratensis leaf. Here, one of the candidate genes, PpCER1-2 was further characterized. A subcellular localization study revealed that PpCER1-2 was localized on the endoplasmic reticulum. The expression of PpCER1-2 could be induced by drought and salt stresses. Overexpression of PpCER1-2 in Brachypodium distachyon increased the alkane amount, whereas decreased the amounts of primary alcohols and total wax. The relative abundance of C25 and C27 alkane and C26 aldehyde increased significantly, but the relative abundance of C29 and C31 alkane and C28 aldehyde decreased. Meanwhile, PpCER1-2 overexpression lines exhibited reduced cuticle permeability and enhanced drought tolerance. These results suggested that PpCER1-2 relatively promoted alkane biosynthesis by converting more very long chain fatty acids precursors into the decarbonylation pathway from the acyl-reduction pathway. Taken together, our data suggest that PpCER1-2 is involved in wax alkane biosynthesis in P. pratensis and plays important roles in improving plant drought tolerance.


Assuntos
Alcanos , Secas , Poa , Estresse Fisiológico , Ceras , Alcanos/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poa/genética , Poa/metabolismo , Estresse Fisiológico/genética , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA