Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 588: 216802, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38467180

RESUMO

Multiple myeloma (MM) is a hematological malignancy that remains incurable, primarily due to the high likelihood of relapse or development of resistance to current treatments. To explore and discover new medications capable of overcoming drug resistance in MM, we conducted cell viability inhibition screens of 1504 FDA-approved drugs. Lomitapide, a cholesterol-lowering agent, was found to exhibit effective inhibition on bortezomib-resistant MM cells in vitro and in vivo. Our data also indicated that lomitapide decreases the permeability of the mitochondrial outer membrane and induces mitochondrial dysfunction in MM cells. Next, lomitapide treatment upregulated DRP1 and PINK1 expression levels, coupled with the mitochondrial translocation of Parkin, leading to MM cell mitophagy. Excessive mitophagy caused mitochondrial damage and dysfunction induced by lomitapide. Meanwhile, PARP14 was identified as a direct target of lomitapide by SPR-HPLC-MS, and we showed that DRP1-induced mitophagy was crucial in the anti-MM activity mediated by PARP14. Furthermore, PARP14 is overexpressed in MM patients, implying that it is a novel therapeutic target in MM. Collectively, our results demonstrate that DRP1-mediated mitophagy induced by PARP14 may be the cause for mitochondrial dysfunction and damage in response to lomitapide treatment.


Assuntos
Benzimidazóis , Doenças Mitocondriais , Mieloma Múltiplo , Humanos , Mitofagia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mitocôndrias/metabolismo , Recidiva Local de Neoplasia/patologia , Resistência a Medicamentos , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo
2.
Int J Biol Sci ; 19(15): 4948-4966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781520

RESUMO

A high recurrence rate of non-Hodgkin's lymphoma (NHL) following chimeric antigen receptor T (CAR T) cell treatment remains a bottleneck, and immunosuppressive tumor microenvironment (TME) compromising CAR T cell efficacy in NHL is the primary cause of relapse. Accordingly, modifying the structure of CAR T cells to attenuate the inhibitory effect of TME thus reducing recurrence rate is a valuable research topic. CD47 has been proved to be a promising therapeutic target and is crucial in regulating macrophage function. Herein, we engineered CD19-CAR T cells to secrete an anti-CD47 single-chain variable fragment (scFv) and validated their function in enhancing antitumor efficacy, regulating T cells differentiation, modifying phagocytosis and polarization of macrophages by in vitro and in vivo researches. The efficacy was analogous or preferable to the combination of CAR T cells and CD47 antibody. Of note, anti-CD47 scFv secreting CAR T cells exert a more potent immune response following specific antigen stimulation compared with parental CAR T cells, characterized by more efficient degranulation and cytokine production with polyfunctionality. Furthermore, locally delivering anti-CD47 by CAR T cells potentially limits toxicities relevant to systemic antibody treatment. Collectively, our research provides a more effective and safer CAR T cell transformation method for enhancing tumor immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Antígeno CD47 , Linfócitos T , Imunoterapia/métodos , Receptores de Antígenos Quiméricos/genética , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Microambiente Tumoral
3.
Cell Death Dis ; 14(8): 498, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542030

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disorder with a dismal prognosis. The dysregulation of histone acetylation is of great significance in the pathogenesis and progression of B-ALL. Regarded as a fundamental acetyltransferase gene, the role of HBO1 (lysine acetyltransferase 7/KAT7) in B-ALL has not been investigated. Herein, we found that HBO1 expression was elevated in human B-ALL cells and associated with poor disease-free survival. Strikingly, HBO1 knockdown inhibited viability, proliferation, and G1-S cycle progression in B-ALL cells, while provoking apoptosis. In contrast, ectopic overexpression of HBO1 enhanced cell viability and proliferation but inhibited apoptotic activation. The results of in vivo experiments also certificated the inhibitory effect of HBO1 knockdown on tumor growth. Mechanistically, HBO1 acetylated histone H3K14, H4K8, and H4K12, followed by upregulating CTNNB1 expression, resulting in activation of the Wnt/ß-catenin signaling pathway. Moreover, a novel small molecule inhibitor of HBO1, WM-3835, potently inhibited the progression of B-ALL. Our data identified HBO1 as an efficacious regulator of CTNNB1 with therapeutic potential in B-ALL.


Assuntos
Histonas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Acetilação , beta Catenina/genética , beta Catenina/metabolismo , Carcinogênese , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Via de Sinalização Wnt/genética
4.
Ann Hematol ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548690

RESUMO

N6-methyladenosine (m6A) RNA modification has recently emerged as an essential regulator of normal and malignant hematopoiesis. As a reversible epigenetic modification found in messenger RNAs and non-coding RNAs, m6A affects the fate of the modified RNA molecules. It is essential in most vital bioprocesses, contributing to cancer development. Here, we review the up-to-date knowledge of the pathological functions and underlying molecular mechanism of m6A modifications in normal hematopoiesis, leukemia pathogenesis, and drug response/resistance. At last, we discuss the critical role of m6A in immune response, the therapeutic potential of targeting m6A regulators, and the possible combination therapy for AML.

5.
Transl Cancer Res ; 12(2): 287-300, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36915581

RESUMO

Background: Myocyte enhancer factor 2D (MEF2D) is involved in the progression of various malignant tumors. However, its impact on B-cell acute lymphoblastic leukemia (B-ALL) has not been elucidated. Methods: In this study, the expression level of MEF2D in B-ALL patients was validated through the Gene Expression Omnibus (GEO) database and clinical specimens. MEF2D-knockdown B-ALL cell lines were constructed by lentivirus transfection, and the effects of MEF2D on the viability, apoptosis, cycle progression, and drug sensitivity of B-ALL cells were verified by Cell Counting Kit-8 (CCK-8) and flow cytometry (FCM). The effect of MEF2D on the proliferation of B-ALL cells in vivo was verified via the construction of a xenograft mouse model. The mechanism of MEF2D regulating B-ALL cells was explored by RNA sequencing analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemical (IHC). Results: In this study, overexpression of MEF2D was observed in B-ALL patients and was remarkably correlated to disease progression in ALL patients. The knockdown of MEF2D expression suppressed cell viability, induced cell apoptosis, blockaded cell cycle progression, enhanced drug sensitivity of B-ALL cells in vitro, and reduced the tumor load in vivo. Furthermore, mechanistic studies revealed that MEF2D knockdown downregulated the expression of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Conclusions: Our research demonstrated that MEF2D was markedly expressed in B-ALL. MEF2D knockdown inhibited cancer progression of B-ALL both in vitro and in vivo, which may be related to the downregulation of the PI3K-AKT signaling pathway. The data suggest that MEF2D plays a vital role in the process of tumorigenesis and may be a potential novel target for B-ALL therapy.

6.
Immunol Cell Biol ; 100(7): 507-528, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35578380

RESUMO

Leukemia and lymphoma-the most common hematological malignant diseases-are often accompanied by complications such as drug resistance, refractory diseases and relapse. Amino acids (AAs) are important energy sources for malignant cells. Tumor-mediated AA metabolism is associated with the immunosuppressive properties of the tumor microenvironment, thereby assisting malignant cells to evade immune surveillance. Targeting abnormal AA metabolism in the tumor microenvironment may be an effective therapeutic approach to address the therapeutic challenges of leukemia and lymphoma. Here, we review the effects of glutamine, arginine and tryptophan metabolism on tumorigenesis and immunomodulation, and define the differences between tumor cells and immune effector cells. We also comment on treatments targeting these AA metabolism pathways in lymphoma and leukemia and discuss how these treatments have profound adverse effects on tumor cells, but leave the immune cells unaffected or mildly affected.


Assuntos
Leucemia , Linfoma , Aminoácidos , Humanos , Imunomodulação , Leucemia/terapia , Linfoma/terapia , Microambiente Tumoral
7.
BMC Genom Data ; 23(1): 7, 2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35033016

RESUMO

BACKGROUND: Belonging to the protein arginine methyltransferase (PRMT) family, the enzyme encoded by coactivator associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of protein arginine residues, especially acts on histones and other chromatin related proteins, which is essential in regulating gene expression. Beyond its well-established involvement in the regulation of transcription, recent studies have revealed a novel role of CARM1 in tumorigenesis and development, but there is still a lack of systematic understanding of CARM1 in human cancers. An integrated analysis of CARM1 in pan-cancer may contribute to further explore its prognostic value and potential immunological function in tumor therapy. RESULTS: Based on systematic analysis of data in multiple databases, we firstly verified that CARM1 is highly expressed in most tumors compared with corresponding normal tissues, and is bound up with poor prognosis in some tumors. Subsequently, relevance between CARM1 expression level and tumor immune microenvironment is analyzed from the perspectives of tumor mutation burden, microsatellite instability, mismatch repair genes, methyltransferases genes, immune checkpoint genes and immune cells infiltration, indicating a potential relationship between CARM1 expression and tumor microenvironment. A gene enrichment analysis followed shortly, which implied that the role of CARM1 in tumor pathogenesis may be related to transcriptional imbalance and viral carcinogenesis. CONCLUSIONS: Our first comprehensive bioinformatics analysis provides a broad molecular perspective on the role of CARM1 in various tumors, highlights its value in clinical prognosis and potential association with tumor immune microenvironment, which may furnish an immune based antitumor strategy to provide a reference for more accurate and personalized immunotherapy in the future.


Assuntos
Neoplasias , Proteína-Arginina N-Metiltransferases , Biomarcadores Tumorais/genética , Histonas/metabolismo , Humanos , Neoplasias/diagnóstico , Prognóstico , Proteína-Arginina N-Metiltransferases/genética , Microambiente Tumoral/genética
8.
Nutrition ; 66: 29-37, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31202134

RESUMO

OBJECTIVE: A plant-based diet has been associated with a reduced risk of cardiovascular (CV) diseases. This study aimed to determine the levels and correlations of CV-related biomarkers and the beneficial role of dietary habits. METHODS: A total of 63 healthy vegetarians (n = 32) and omnivores (n = 31) were recruited. The baseline characteristics were recorded and measured (including lipid profiles, blood glucose, etc.). Liquid chromatography-mass spectrometry method was developed for the simultaneous determination of seven circulating CV-related biomarkers. RESULTS: L-carnitine (L-Car), L-methionine, and ascorbic acid (AA) were significantly higher in vegetarians than in omnivores. In the vegetarians, L-Car had a negative correlation with triacylglycerols (P = 0.042) and blood glucose (P = 0.048) and a positive correlation with high-density lipoprotein cholesterol (P = 0.049). L-Car was also positively correlated with L-lysine (P = 0.009), L-methionine (P = 0.006), and AA (P = 0.035). The vegetarians' AA also had a negative correlation with L-homocysteine (P = 0.028). In the omnivores, L-Car was negatively correlated with total cholesterol (P = 0.008), low-density lipoprotein cholesterol (P = 0.004), and high-density lipoprotein cholesterol (P = 0.038). Omnivores' body mass index was positively correlated with L-homocysteine (P = 0.033), and age was positively correlated with trimethylamine N-oxide (P < 0.001) and blood glucose (P = 0.007), but not in vegetarians. CONCLUSIONS: Our results suggest that vegetarians have an elevated level of L-Car, which might be associated with endogenous biosynthesis and diet composition. Circulating L-Car might play an important role in CV protection, especially in vegetarians.


Assuntos
Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/prevenção & controle , Carnitina/sangue , Dieta/métodos , Lipídeos/sangue , Adulto , Idoso , Biomarcadores/sangue , Dieta Vegetariana , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Taiwan , Vegetarianos/estatística & dados numéricos
9.
Biochem J ; 476(10): 1387-1400, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31036716

RESUMO

Ultraviolet-B exposure causes an inflammatory response, photoaged skin, and degradation of extracellular matrix proteins including collagen and elastin. The regulation of these genes was suggested as an important mechanism to attenuate skin aging. Glycolic acid (GA) is commonly present in fruits and recently used to treat dermatological diseases. We reported that GA slows down cell inflammation and aging caused by UVB. Little is known about GA retarding the skin premature senescence or how to impede these events. To investigate the potential of GA to regulate the expression of MMPs and collagen, GA was topically applied onto human keratinocytes and the C57BL/6J mice dorsal skin. In the present study, we demonstrated that GA reduced UVB-induced type-I procollagen expression and secretory collagen levels. GA reverted and dose-dependently increased the level of aquaporin-3 (AQP3), the expression of which was down-regulated by UVB. The UV-induced MMP-9 level and activity were reduced by GA pre-treatment. Concomitantly, GA reverted mitogen-activated protein kinase (MMP-9) activation and inhibited the extracellular signal-regulated kinase activation (p38, pERK) triggered by UVB. The animal model also presented that GA attenuated the wrinkles caused by UVB on the mouse dorsal skin. Finally, GA triggers the transient receptor potential vanilloid-1 (TRPV-1) channel to initiate the anti-photoaging mechanism in keratinocytes. These findings clearly indicated that the mechanisms of GA promote skin protection against UVB-induced photoaging and wrinkle formation. GA might be an important reagent and more widely used to prevent UVB-induced skin aging.


Assuntos
Aquaporina 3/biossíntese , Colágeno/metabolismo , Regulação da Expressão Gênica , Glicolatos/farmacologia , Queratinócitos , Metaloproteinase 9 da Matriz/química , Envelhecimento da Pele , Pele , Raios Ultravioleta , Administração Tópica , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Queratinócitos/metabolismo , Queratinócitos/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Camundongos , Pele/metabolismo , Pele/patologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/patologia , Envelhecimento da Pele/efeitos da radiação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
J Dermatol Sci ; 86(3): 238-248, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28330776

RESUMO

BACKGROUND: Glycolic acid (GA), commonly present in fruits, has been used to treat dermatological diseases. Extensive exposure to solar ultraviolet B (UVB) irradiation plays a crucial role in the induction of skin inflammation. The development of photo prevention from natural materials represents an effective strategy for skin keratinocytes. OBJECTIVE: The aim of this study was to investigate the molecular mechanisms underlying the glycolic acid (GA)-induced reduction of UVB-mediated inflammatory responses. METHODS: We determined the effects of different concentrations of GA on the inflammatory response of human keratinocytes HaCaT cells and C57BL/6J mice dorsal skin. After GA was topically applied, HaCaT and mice skin were exposed to UVB irradiation. RESULTS: GA reduced the production of UVB-induced nuclear factor kappa B (NF-κB)-dependent inflammatory mediators [interleukin (IL)-1ß, IL-6, IL-8, cyclooxygenase (COX)-2, tumor necrosis factor-α, and monocyte chemoattractant protein (MCP-1)] at both mRNA and protein levels. GA inhibited the UVB-induced promoter activity of NF-κB in HaCaT cells. GA attenuated the elevation of senescence associated with ß-galactosidase activity but did not affect the wound migration ability. The topical application of GA inhibited the genes expression of IL-1ß, IL-6, IL-8, COX-2, and MCP-1 in UVB-exposed mouse skin. The mice to UVB irradiation after GA was topically applied for 9 consecutive days and reported that 1-1.5% of GA exerted anti-inflammatory effects on mouse skin. CONCLUSION: We clarified the molecular mechanism of GA protection against UVB-induced inflammation by modulating NF-κB signaling pathways and determined the optimal concentration of GA in mice skin exposed to UVB irradiation.


Assuntos
Anti-Inflamatórios/administração & dosagem , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/metabolismo , Glicolatos/administração & dosagem , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , NF-kappa B/metabolismo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta , Administração Cutânea , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Relação Dose-Resposta a Droga , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Queratinócitos/enzimologia , Queratinócitos/imunologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/imunologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Pele/enzimologia , Pele/imunologia , Fatores de Tempo , Transfecção
11.
DNA Cell Biol ; 36(2): 177-187, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28112987

RESUMO

Exposure to UVB radiation induces inflammation and free radical-mediated oxidative stress through reactive oxygen species (ROS) that play a crucial role in the induction of skin cancer. Glycolic acid (GA) is frequently used in cosmetics and dermatology. The aim of the study was to analyze the photoprotective mechanisms through which GA retards UVB-induced ROS accumulation and inflammation in normal human epidermal keratinocytes (NHEKs) and mice skin, respectively. NHEK cell line and C57BL/6J mice were treated with GA (0.1 or 5 mM) for 24 h followed by UVB irradiation. ROS accumulation, DNA damage, and expression of inflammasome complexes (NLRP3, NLRC4, ASC, and AIM2) were measured in vitro. Epidermal thickness and inflammasome complex proteins were analyzed in vivo. GA significantly prevented UVB-induced loss of skin cell viability, ROS formation, and DNA damage (single and double strands DNA break). GA suppressed the mRNA expression levels of NLRC4 and AIM2 among the inflammasome complexes. GA also blocked interleukin (IL)-1ß by reducing the activity of caspase-1 in the NHEKs. Treatment with GA (2%) inhibited UVB-induced inflammation marker NLRC4 protein levels in mouse dorsal skin. The photoprotective activity of GA was ascribed to the inhibition of ROS formation and DNA damage, as well as a reduction in the activities of inflammasome complexes and IL-1ß. We propose that GA has anti-inflammatory and photoprotective effects against UVB irradiation. GA is potentially beneficial to the protection of human skin from UV damage.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Epidérmicas , Glicolatos/farmacologia , Inflamassomos/metabolismo , Queratinócitos/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Animais , Caspase 1/genética , Fragmentação do DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Histonas/metabolismo , Humanos , Interleucina-1beta/biossíntese , Interleucina-1beta/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA