Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
JCI Insight ; 9(20)2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39435664

RESUMO

With the increasing prevalence of antimicrobial-resistant bacterial infections, there is interest in using bacteriophages (phages) to treat such infections. However, the factors that govern bacteriophage pharmacokinetics in vivo remain poorly understood. Here, we have examined the contribution of neutrophils, the most abundant phagocytes in the body, to the pharmacokinetics of i.v. administered bacteriophage in uninfected mice. A single dose of LPS-5, a bacteriophage recently used in human clinical trials to treat drug-resistant Pseudomonas aeruginosa, was administered i.v. to both immunocompetent BALB/c and neutropenic CD1 mice. Phage concentrations were assessed in peripheral blood and spleen at 0.25, 1, 2, 4, 8, 12, and 24 hours after administration by plaque assay and qPCR. We observed that the phage clearance was only minimally affected by neutropenia. Indeed, the half-lives of phages in blood in BALB/c and CD1 mice were 3.45 and 3.66 hours, respectively. These data suggest that neutrophil-mediated phagocytosis is not a major determinant of phage clearance. Conversely, we observed a substantial discrepancy in circulating phage levels over time when measured by qPCR versus plaque assay, suggesting that significant inactivation of circulating phages occurs over time. These data indicate that alternative factors, but not neutrophils, inactivate i.v. administered phages.


Assuntos
Camundongos Endogâmicos BALB C , Neutrófilos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Neutrófilos/metabolismo , Neutrófilos/imunologia , Camundongos , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/imunologia , Neutropenia/terapia , Terapia por Fagos/métodos , Fagocitose , Feminino , Bacteriófagos , Baço/metabolismo , Fagos de Pseudomonas
2.
Children (Basel) ; 11(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39334656

RESUMO

BACKGROUND: Pediatric CKD is associated with a high risk of cardiovascular disease (CVD). Early detection of subclinical CVD in childhood CKD can be achieved through various cardiovascular (CV) assessments, including carotid intima-media thickness (cIMT), ambulatory blood pressure monitoring (ABPM), and arterial stiffness indices. Lactoferrin (LF), a key functional glycoprotein found in breast milk, has been linked to several diseases and has potential as a biomarker. METHODS: In our study of 102 children with CKD stages G1-G4, we explored the relationship between LF and CV risk markers. RESULTS: We found that LF concentration was not related to the severity or underlying causes of childhood CKD, but was positively correlated with overweight/obesity. Lower LF levels were correlated with increased cIMT and elevated arterial stiffness indices. Notably, abnormalities in ABPM profiles were observed in up to 60% of the children with CKD, with low LF levels linked to nighttime hypertension, nocturnal non-dipping, and ABPM abnormalities. CONCLUSIONS: In conclusion, LF shows promise as a biomarker for detecting subclinical CVD in children with CKD. Its potential utility in early detection could be instrumental in guiding timely interventions and improving long-term CV outcomes, although further research is needed to clarify the underlying mechanisms.

3.
Nutrients ; 16(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39203744

RESUMO

Lactoferrin, a glycoprotein derived from breastmilk, is recognized for its health benefits in infants and children; however, its protective effects when administered during gestation and lactation against offspring hypertension remain unclear. This study aimed to investigate whether maternal lactoferrin supplementation could prevent hypertension in offspring born to mothers with chronic kidney disease (CKD), with a focus on nitric oxide (NO), renin-angiotensin system (RAS) regulation, and alterations in gut microbiota and short-chain fatty acids (SCFAs). Prior to pregnancy, female rats were subjected to a 0.5% adenine diet for 3 weeks to induce CKD. During pregnancy and lactation, pregnant rats received one of four diets: normal chow, 0.5% adenine diet, 10% lactoferrin diet, or adenine diet supplemented with lactoferrin. Male offspring were euthanized at 12 weeks of age (n = 8 per group). Supplementation with lactoferrin during gestation and lactation prevented hypertension in adult offspring induced by a maternal adenine diet. The maternal adenine diet caused a decrease in the index of NO availability, which was restored by 67% with maternal LF supplementation. Additionally, LF was related to the regulation of the RAS, as evidenced by a reduced renal expression of renin and the angiotensin II type 1 receptor. Combined maternal adenine and LF diets altered beta diversity, shifted the offspring's gut microbiota, decreased propionate levels, and reduced the renal expression of SCFA receptors. The beneficial effects of lactoferrin are likely mediated through enhanced NO availability, rebalancing the RAS, and alterations in gut microbiota composition and SCFAs. Our findings suggest that maternal lactoferrin supplementation improves hypertension in offspring in a model of adenine-induced CKD, bringing us closer to potentially translating lactoferrin supplementation clinically for children born to mothers with CKD.


Assuntos
Adenina , Suplementos Nutricionais , Microbioma Gastrointestinal , Hipertensão , Lactação , Lactoferrina , Fenômenos Fisiológicos da Nutrição Materna , Sistema Renina-Angiotensina , Animais , Lactoferrina/administração & dosagem , Lactoferrina/farmacologia , Feminino , Gravidez , Masculino , Hipertensão/prevenção & controle , Hipertensão/induzido quimicamente , Hipertensão/etiologia , Ratos , Sistema Renina-Angiotensina/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Óxido Nítrico/metabolismo , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/induzido quimicamente , Ácidos Graxos Voláteis/metabolismo , Ratos Sprague-Dawley , Dieta
4.
Dalton Trans ; 53(30): 12620-12626, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39010726
5.
Pharmaceutics ; 16(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38399278

RESUMO

Oral cancer represents a global health burden, necessitating novel therapeutic strategies. Photodynamic and photothermal therapies using indocyanine green (ICG) have shown promise due to their distinctive near-infrared (NIR) light absorption characteristics and FDA-approved safety profiles. This study develops ICG-loaded liposomes (Lipo-ICGs) to further explore their potential in oral cancer treatments. We synthesized and characterized the Lipo-ICGs, conducted in vitro cell culture experiments to assess cellular uptake and photodynamic/photothermal effects, and performed in vivo animal studies to evaluate their therapeutic efficacy. Quantitative cell apoptosis and gene expression variation were further characterized using flow cytometry and RNA sequencing, respectively. Lipo-ICGs demonstrated a uniform molecular weight distribution among particles. The in vitro studies showed a successful internalization of Lipo-ICGs into the cells and a significant photodynamic treatment effect. The in vivo studies confirmed the efficient delivery of Lipo-ICGs to tumor sites and successful tumor growth inhibition following photodynamic therapy. Moreover, light exposure induced a time-sensitive photothermal effect, facilitating the further release of ICG, and enhancing the treatment efficacy. RNA sequencing data showed significant changes in gene expression patterns upon Lipo-ICG treatment, suggesting the activation of apoptosis and ferroptosis pathways. The findings demonstrate the potential of Lipo-ICGs as a therapeutic tool for oral cancer management, potentially extending to other cancer types.

6.
bioRxiv ; 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328123

RESUMO

With the increasing prevalence of antimicrobial-resistant bacterial infections, there is great interest in using lytic bacteriophages (phages) to treat such infections. However, the factors that govern bacteriophage pharmacokinetics in vivo remain poorly understood. Here, we have examined the contribution of neutrophils, the most abundant phagocytes in the body, to the pharmacokinetics of intravenously administered bacteriophage in uninfected mice. A single dose of LPS-5, an antipseudomonal bacteriophage recently used in human clinical trials, was administered intravenously to both wild-type BALB/c and neutropenic ICR mice. Phage concentrations were assessed in peripheral blood and spleen at 0.5, 1, 2, 4, 8, 12, and 24 hours after administration by plaque assay and qPCR. We observed that the phage clearance is only minimally affected by neutropenia. Indeed, the half-life of phages in blood in BALB/c and ICR mice is 3.45 and 3.66 hours, respectively. These data suggest that neutrophil-mediated phagocytosis is not a major determinant of phage clearance. Conversely, we observed a substantial discrepancy in circulating phage levels over time when measured by qPCR versus plaque assay, suggesting that substantial functional inactivation of circulating phages occurs over time. These data indicate that circulating factors, but not neutrophils, inactivate intravenously administered phages.

8.
Biomedicines ; 11(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38137539

RESUMO

Children suffering from chronic kidney disease (CKD) have a high risk of cardiovascular disease (CVD). The early detection and diagnosis of subclinical CVD in pediatric CKD can reduce mortality later in life. Plasma factor 4 (PF4) is a chemokine released by activated platelets. We examined whether or not PF4 in the plasma and urine, its kidney function normalized ratio, and fractional excretion have differential associations with CVD risk markers in 139 youths aged 3 to 18 years old with CKD stages G1-G4. Significant negative correlations were observed between plasma PF4 and cardiovascular surrogate markers, such as the left ventricular mass index (LVMI), carotid intima-media thickness (cIMT), and pulse wave velocity (PWV). The plasma PF4/creatinine (Cr) ratio was lower in CKD children with a high daytime BP and 24 h BP, high BP load, and nocturnal non-dipping status. After adjusting for confounders, the plasma PF4 and plasma PF4/Cr ratio still independently predicted an abnormal ABPM profile. In addition, both the plasma PF4 and plasma PF4/Cr ratio presented a negative correlation with the L-arginine and asymmetric dimethylarginine ratio. These findings provide convincing evidence supporting the link between PF4 and CVD markers in pediatric CKD. Our study highlights the importance of further research to assess the performance of PF4-related biomarkers in predicting CVD events and CKD progression in children with CKD.

9.
J Biol Chem ; 299(12): 105455, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949232

RESUMO

The Akt-Rheb-mTORC1 pathway plays a crucial role in regulating cell growth, but the mechanisms underlying the activation of Rheb-mTORC1 by Akt remain unclear. In our previous study, we found that CBAP was highly expressed in human T-ALL cells and primary tumors, and its deficiency led to reduced phosphorylation of TSC2/S6K1 signaling proteins as well as impaired cell proliferation and leukemogenicity. We also demonstrated that CBAP was required for Akt-mediated TSC2 phosphorylation in vitro. In response to insulin, CBAP was also necessary for the phosphorylation of TSC2/S6K1 and the dissociation of TSC2 from the lysosomal membrane. Here we report that CBAP interacts with AKT and TSC2, and knockout of CBAP or serum starvation leads to an increase in TSC1 in the Akt/TSC2 immunoprecipitation complexes. Lysosomal-anchored CBAP was found to override serum starvation and promote S6K1 and 4EBP1 phosphorylation and c-Myc expression in a TSC2-dependent manner. Additionally, recombinant CBAP inhibited the GAP activity of TSC2 complexes in vitro, leading to increased Rheb-GTP loading, likely due to the competition between TSC1 and CBAP for binding to the HBD domain of TSC2. Overexpression of the N26 region of CBAP, which is crucial for binding to TSC2, resulted in a decrease in mTORC1 signaling and an increase in TSC1 association with the TSC2/AKT complex, ultimately leading to increased GAP activity toward Rheb and impaired cell proliferation. Thus, we propose that CBAP can modulate the stability of TSC1-TSC2 as well as promote the translocation of TSC1/TSC2 complexes away from lysosomes to regulate Rheb-mTORC1 signaling.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana , Proteínas Proto-Oncogênicas c-akt , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Humanos , Proliferação de Células , Guanosina Trifosfato/metabolismo , Imunoprecipitação , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
10.
Front Immunol ; 14: 1225348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675120

RESUMO

Introduction: Arsenic (As) exposure is associated with lung toxicity and we aim to investigate the effects of arsenic exposure on lung fibrotic changes. Methods: Participants (n= 976) enrolled via a general health survey underwent chest low-dose computed tomography (LDCT), spirometry forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), and urinary arsenic examination during 2016 and 2018. Lung fibrotic changes from LDCT were defined. AsLtoL, low arsenic levels in both 2016 and 2018; AsLtoH, low arsenic in 2016 but high levels in 2018; AsHtoL, high arsenic in 2016 but low levels in 2018; AsHtoH, high arsenic levels in both 2016 and 2018. Mice exposed to 0. 0.2mg/L, 2 mg/L, 50 mg/L of sodium arsenite (NaAsO2) through drinking water for 12 weeks and 24 weeks were applied for histological analysis. Cultured lung epithelial cells were exposed to NaAsO2 and the mesenchymal changes were examined. Results: AsHtoH increased the risk (OR= 1.65, 95% CI 1.10, 2.49) of Lung fibrotic positive to positive (reference: Lung fibrotic negative to negative) compared with AsLtoL. Moreover, the predicted mean of FVC and FEV1 in AsHtoH (-0.09 units, 95% CI: -0.27, -0.09; -0.09 units, 95% CI: -0.17, -0.01) and AsLtoH (-0.13 units, 95% CI: -0.30, -0.10; -0.13 units, 95% CI: -0.22, -0.04) was significantly lower than ASLtoL. Significant lung fibrotic changes including the increase of the alveolar septum thickness and collagen fiber deposition were observed upon 2 mg/L NaAsO2 treatment for 12 weeks, and the damage was dose- and time-dependent. In vitro, sodium arsenite treatment promotes the epithelial-mesenchymal transition (EMT)-like changes of the normal human bronchial epithelial cells, including upregulation of several fibrotic and mesenchymal markers (fibronectin, MMP-2, and Snail) and cell migration. Inhibition of reactive oxygen species (ROS) and MMP-2 impaired the arsenic-induced EMT changes. Administration of a flavonoid, apigenin, inhibited EMT in vitro and pulmonary damages in vivo with the reduction of mesenchymal markers. Discussion: we demonstrated that continued exposure to arsenic causes lung fibrosis in humans and mice. Targeting lung epithelial cells EMT is effective on the development of therapeutic strategy. Apigenin is effective in the inhibition of arsenic-induced pulmonary fibrosis and EMT.


Assuntos
Arsênio , Fibrose Pulmonar , Humanos , Animais , Camundongos , Estudos Longitudinais , Fibrose Pulmonar/induzido quimicamente , Arsênio/toxicidade , Metaloproteinase 2 da Matriz , Apigenina , Estudos de Coortes , Pulmão , Modelos Teóricos
11.
J Clin Med ; 12(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762835

RESUMO

Cardiovascular disease (CVD) is a significant cause of mortality and morbidity among children with chronic kidney disease (CKD). The causes of pediatric CKD differ from those in adults, as congenital anomalies in the kidney and urinary tract (CAKUT) are the leading causes in childhood. Identifying ideal markers of CVD risk early is crucial for CKD children to improve their care. Previously, we screened differentially expressed proteins in CKD children with or without blood pressure (BP) abnormalities and identified pregnancy zone protein (PZP). In 106 children and adolescents with CKD stages G1-G4, we analyzed plasma PZP concentration. The associations between PZP and ambulatory BP monitoring (ABPM) profile, parameters of cardiac and carotid ultrasounds, indices of arterial stiffness, and nitric oxide (NO) parameters were determined. We observed that PZP positively correlated with arterial stiffness indices, beta index, and pulse wave velocity in CAKUT. CKD children with abnormalities in ABPM and night dipping displayed a higher PZP concentration than those without. Additionally, the PZP level was positively correlated with NO bioavailability. In conclusion, our results suggest PZP has differential influences on cardiovascular risk in CAKUT and non-CAKUT children. Identification of this relationship is novel in the pediatric CKD literature.

12.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569370

RESUMO

Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a severe manifestation of CTD that leads to significant morbidity and mortality. Clinically, ILD can occur in diverse CTDs. Pathologically, CTD-ILD is characterized by various histologic patterns, such as nonspecific interstitial pneumonia, organizing pneumonia, and usual interstitial pneumonia. Abnormal immune system responses have traditionally been instrumental in its pathophysiology, and various changes in immune cells have been described, especially in macrophages. This article first briefly overviews the epidemiology, clinical characteristics, impacts, and histopathologic changes associated with CTD-ILD. Next, it summarizes the roles of various signaling pathways in macrophages or products of macrophages in ILD, helped by insights gained from animal models. In the following sections, this review returns to studies of macrophages in CTD-ILD in humans for an overall picture of the current understanding. Finally, we direct attention to potential therapies targeting macrophages in CTD-ILD in investigation or in clinical trials, as well as the future directions regarding macrophages in the context of CTD-ILD. Although the field of macrophages in CTD-ILD is still in its infancy, several lines of evidence suggest the potential of this area.


Assuntos
Doenças do Tecido Conjuntivo , Pneumonias Intersticiais Idiopáticas , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Animais , Humanos , Doenças Pulmonares Intersticiais/terapia , Doenças Pulmonares Intersticiais/complicações , Doenças do Tecido Conjuntivo/complicações , Fibrose Pulmonar Idiopática/complicações , Macrófagos
13.
Front Immunol ; 14: 1193647, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545493

RESUMO

Background: Few studies assess cord blood biomarkers to predict prenatal exposure to di(2-ethylhexyl) phthalate (DEHP) on the development of allergic diseases later in childhood. IL-33 has been indicated to play an important role in allergic diseases. We evaluated the association of prenatal DEHP exposure and IL-33 in cord blood on the development of allergic diseases. We also investigated the mechanism of DEHP in human lung epithelial cells and asthma animal models. Methods: 66 pregnant women were recruited, and their children followed when they were aged 3 years. Maternal urinary DEHP metabolites were determined using liquid chromatography-electrospray-ionization-tandem mass spectrometry. The effect of DEHP on IL-33 production was investigated in human lung epithelial cells and club cell-specific aryl hydrocarbon receptor (AhR) deficiency mice. ELISA and RT-PCR, respectively, measured the IL-33 cytokine concentration and mRNA expression. Results: The concentrations of maternal urinary DEHP metabolites and serum IL-33 in cord blood with childhood allergy were significantly higher than those in the non-childhood allergy group. DEHP and MEHP could induce IL-33 production and reverse by AhR antagonist and flavonoids in vitro. Enhanced ovalbumin-induced IL-4 and IL-33 production in bronchoalveolar lavage fluid (BALF) by DEHP exposure and suppressed in club cell-specific AhR null mice. Kaempferol has significantly reversed the DEHP effect in the asthma animal model. Conclusions: Cord blood IL-33 level was correlated to childhood allergy and associated with maternal DEHP exposure. IL-33 might be a potential target to assess the development of DEHP-related childhood allergic disease. Flavonoids might be the natural antidotes for DEHP.


Assuntos
Asma , Dietilexilftalato , Hipersensibilidade , Interleucina-33 , Animais , Feminino , Humanos , Camundongos , Gravidez , Asma/induzido quimicamente , Dietilexilftalato/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Pré-Escolar , Exposição Materna
14.
Cancers (Basel) ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980662

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, is an aggressive and lethal cancer with a dismal five-year survival rate. Despite remarkable improvements in cancer therapeutics, the clinical outcome of PDAC patients remains poor due to late diagnosis of the disease. This highlights the importance of early detection, wherein biomarker evaluation including exosomes would be helpful. Exosomes, small extracellular vesicles (sEVs), are cell-secreted entities with diameters ranging from 50 to 150 nm that deliver cellular contents (e.g., proteins, lipids, and nucleic acids) from parent cells to regulate the cellular processes of targeted cells. Recently, an increasing number of studies have reported that exosomes serve as messengers to facilitate stromal-immune crosstalk within the PDAC tumor microenvironment (TME), and their contents are indicative of disease progression. Moreover, evidence suggests that exosomes with specific surface markers are capable of distinguishing patients with PDAC from healthy individuals. Detectable exosomes in bodily fluids (e.g., blood, urine, saliva, and pancreatic juice) are omnipresent and may serve as promising biomarkers for improving early detection and evaluating patient prognosis. In this review, we shed light on the involvement of exosomes and their cargos in processes related to disease progression, including chemoresistance, angiogenesis, invasion, metastasis, and immunomodulation, and their potential as prognostic markers. Furthermore, we highlight feasible clinical applications and the limitations of exosomes in liquid biopsies as tools for early diagnosis as well as disease monitoring. Taking advantage of exosomes to improve diagnostic capacity may provide hope for PDAC patients, although further investigation is urgently needed.

15.
Front Mol Biosci ; 9: 1045885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36567945

RESUMO

Ferroptosis is a recently discovered programmed cell death pathway initiated by reactive oxygen species (ROS). Cancer cells can escape ferroptosis, and strategies to promote cancer treatment are crucial. Indocyanine green (ICG) is a near-infrared (NIR) fluorescent molecule used in the imaging of residual tumor removal during surgery. Growing attention has been paid to the anticancer potential of ICG-NIR irradiation by inducing ROS production and theranostic effects. Organic anion transmembrane polypeptide (OATP) 1B3 is responsible for ICG metabolism. Additionally, the overexpression of OATP1B3 has been reported in several cancers. However, whether ICG combined with NIR exposure can cause ferroptosis remains unknown and the concept of treating OATP1B3-expressing cells with ICG-NIR irradiation has not been validated. We then used ICG as a theranostic molecule and an OATP1B3-transfected fibrosarcoma cell line, HT-1080 (HT-1080-OATP1B3), as a cell model. The HT-1080-OATP1B3 cell could promote the uptake of ICG into the cytoplasm. We observed that the HT-1080-OATP1B3 cells treated with ICG and exposed to 808-nm laser irradiation underwent apoptosis, as indicated by a reduction in mitochondrial membrane potential, and upregulation of cleaved Caspase-3 and Bax but downregulation of Bcl-2 expression. Moreover, lipid ROS production and consequent ferroptosis and hyperthermic effect were noted after ICG and laser administration. Finally, in vivo study findings also revealed that ICG with 808-nm laser irradiation has a significant effect on cancer suppression. ICG is a theranostic molecule that exerts synchronous apoptosis, ferroptosis, and hyperthermia effects and thus can be used in cancer treatment. Our findings may facilitate the development of treatment modalities for chemo-resistant cancers.

16.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430358

RESUMO

Arsenic is an environmental factor associated with epithelial-mesenchymal transition (EMT). Since macrophages play a crucial role in regulating EMT, we studied the effects of arsenic on macrophage polarization. We first determined the arsenic concentrations to be used by cell viability assays in conjunction with previous studies. In our results, arsenic treatment increased the alternatively activated (M2) macrophage markers, including arginase 1 (ARG-1) gene expression, chemokine (C-C motif) ligand 16 (CCL16), transforming growth factor-ß1 (TGF-ß1), and the cluster of differentiation 206 (CD206) surface marker. Arsenic-treated macrophages promoted A549 lung epithelial cell invasion and migration in a cell co-culture model and a 3D gel cell co-culture model, confirming that arsenic treatment promoted EMT in lung epithelial cells. We confirmed that arsenic induced autophagy/mitophagy by microtubule-associated protein 1 light-chain 3-II (LC3 II) and phosphor-Parkin (p-Parkin) protein markers. The autophagy inhibitor chloroquine (CQ) recovered the expression of the inducible nitric oxide synthase (iNOS) gene in arsenic-treated M1 macrophages, which represents a confirmation that arsenic indeed induced the repolarization of classically activated (M1) macrophage to M2 macrophages through the autophagy/mitophagy pathway. Next, we verified that arsenic increased M2 cell markers in mouse blood and lungs. This study suggests that mitophagy is involved in the arsenic-induced M1 macrophage switch to an M2-like phenotype.


Assuntos
Arsênio , Mitofagia , Camundongos , Animais , Arsênio/toxicidade , Arsênio/metabolismo , Macrófagos/metabolismo , Expressão Gênica , Citocinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36293195

RESUMO

Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction, bronchial hyper-responsiveness, and airway inflammation. The chronic inflammation of the airway is mediated by many cell types, cytokines, chemokines, and inflammatory mediators. Research suggests that exposure to air pollution has a negative impact on asthma outcomes in adult and pediatric populations. Air pollution is one of the greatest environmental risks to health, and it impacts the lungs' innate and adaptive defense systems. A major pollutant in the air is particulate matter (PM), a complex component composed of elemental carbon and heavy metals. According to the WHO, 99% of people live in air pollution where air quality levels are lower than the WHO air quality guidelines. This suggests that the effect of air pollution exposure on asthma is a crucial health issue worldwide. Macrophages are essential in recognizing and processing any inhaled foreign material, such as PM. Alveolar macrophages are one of the predominant cell types that process and remove inhaled PM by secreting proinflammatory mediators from the lung. This review focuses on macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants in asthma.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Humanos , Adulto , Criança , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Asma/metabolismo , Material Particulado/efeitos adversos , Material Particulado/análise , Macrófagos Alveolares/metabolismo , Inflamação , Citocinas/metabolismo , Mediadores da Inflamação , Carbono , Exposição Ambiental/efeitos adversos
18.
Curr Issues Mol Biol ; 44(10): 4616-4625, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36286030

RESUMO

The 4-(phenylsulfanyl) butan-2-one (4-PSB-2), a marine-derived compound from soft coral, was proven to have multiple biological activities including neuroprotection and potent anti-inflammatory effects. CC chemokine ligand (CCL)-1 belongs to T helper (Th)2-related chemokines that are involved in the recruitment of Th2 inflammatory cells. Histone acetylation has been recognized as a critical mechanism underlying the regulated cytokine and chemokine production. Our study tried to investigate the anti-inflammatory effect of 4-PSB-2 on CCL-1 production in human monocytes and explore possible underlying intracellular processes, including epigenetic regulation. To confirm our hypothesis, human monocyte THP-1 cell line and primary CD14+ cells were pretreated with various concentrations of 4-PSB-2 and then were stimulated with lipopolysaccharide (LPS). The CCL-1 concentration was measured by enzyme-linked immunosorbent assays, and the intracellular signaling pathways and epigenetic regulation of 4-PSB-2 were investigated by using Western blotting and chromatin immunoprecipitation analysis. In this study, we found that 4-PSB-2 had a suppressive effect on LPS-induced CCL-1 production. Moreover, this suppressive effect of 4-PSB-2 was mediated via intracellular signaling such as the mitogen-activated protein kinase and nuclear factor-κB pathways. In addition, 4-PSB-2 could suppress CCL-1 production by epigenetic regulation through downregulating histone H3 and H4 acetylation. In short, our study demonstrated that 4-PSB-2 may have a potential role in the treatment of allergic inflammation.

19.
Front Mol Biosci ; 9: 1020888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299300

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer with a dismal five-year survival rate of 11%. Despite remarkable advancements in cancer therapeutics, PDAC patients rarely benefit from it due to insurmountable treatment resistance. Notably, PDAC is pathologically characterized by an extensive desmoplastic reaction and an extremely immunosuppressive tumour microenvironment (TME). The PDAC TME consists of cell components (e.g., tumour, immune and stromal cells) and noncellular components (e.g., extracellular matrix), exhibiting high complexity and their interplay resulting in resistance to chemotherapeutics and immune checkpoint inhibitors. In our review, we shed light on how crosstalk of complex environmental components modulates PDAC drug resistance, and we summarize related clinical trials. Moreover, we extend our discussion on TME exploration and exosome analysis, providing new insights into clinical applications, including personalized medicine, disease monitoring and drug carriers.

20.
J Pers Med ; 12(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36013190

RESUMO

Identifying children with chronic kidney disease (CKD) at high risk of cardiovascular disease (CVD) and ensuring they receive appropriate treatment can prevent CVD events and mortality later in life. Hydrogen sulfide (H2S) is a gaseous signaling molecule participating in CVD and CKD. Thiosulfate is not only an oxidation product of H2S but is also a H2S donor. We examined whether H2S, thiosulfate, and their combined ratio have differential associations with CVD risk markers in 56 children and adolescents aged 6-18 years with CKD stages G1-G4. Up to two-thirds of CKD children showed higher BP load on 24 h ambulatory blood pressure monitoring (ABPM), even in the early stage. CKD children with ABPM abnormalities had a higher H2S-to-thiosulfate ratio, while H2S-related parameters were not affected by the severity of CKD. The H2S-to-thiosulfate ratio was positively correlated with 24 h systolic BP (SBP), nighttime SBP, and carotid artery intima-media thickness (cIMT). After adjusting for confounders, H2S was negatively associated with LV mass, thiosulfate was positively associated with 24-DBP, and the H2S-to-thiosulfate ratio was positively correlated with nighttime SBP and cIMT. Our data demonstrate differential associations in circulating H2S, thiosulfate, and their combined ratio with CVD risk in childhood CKD. Further studies are required to determine whether targeting the H2S signaling pathway can develop novel therapeutic strategies against CVD in this high-risk population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA