RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Mung bean coat has long been known for its wide-ranging health benefits, including antibacterial, anti-inflammatory, and immune-modulatory properties. For many years in China, mung beans have been employed in the therapeutic management of inflammation induced by pathogenic bacteria infection, yet the precise underlying protective mechanisms remain to be comprehensively elucidated. AIM OF THE STUDY: Given the growing concern over antibiotic resistance, there is a necessity to explore new anti-infective agents. Here, the anti-infective properties of Mung bean coat extract (MBCE) were investigated using a model of Pseudomonas aeruginosa-infected nematodes. MATERIALS AND METHODS: The protective effects of MBCE on Pseudomonas aeruginosa (PA14) infected nematodes were assessed by lifespan assay, reactive oxygen species (ROS) levels, transcriptomics, and Quantitative real-time PCR (qRT-PCR). RESULTS: MBCE significantly improved the survival rates and reduced ROS levels in infected worms. Transcriptomic profiling disclosed predominant KEGG pathway enrichments in immune responses, energy metabolism processes such as oxidative phosphorylation and the tricarboxylic acid cycle, alongside aging-related neurodegenerative diseases and longevity regulatory pathways like PI3K-AKT, MAPK, mTOR, and FOXO. qRT-PCR validation showed that MBCE upregulated antimicrobial peptides (spp-3, lys-1, lys-7, abf-2, cnc-2, nlp-33, clec-85), gram-negative responses (irg-3, src-2, grd-3, col-179), and mitochondrial function (mev-1) gene expressions, while downregulated insulin signaling-related (age-1, akt-1, akt-2, daf-15) gene expressions. Mutant strains lifespan analysis indicated that the nsy-1, sek-1, pmk-1, daf-2, aak-2, sir-2.1, and skn-1 were necessary for lifespan extension mediated by MBCE under PA14 infection, but not clk-1, isp-1, mev-1, or daf-16. CONCLUSION: Collectively, our findings suggested that MBCE increased the survival rates of PA14-infected worms by activating downstream antimicrobial and antioxidant gene expressions through modulation of MAPK, daf-2, aak-2, sir-2.1, and skn-1 pathways. The research underscored the potential of natural plant compounds to strengthen the body's defenses against infections, potentially mitigating harmful ROS levels and improving survival. Additionally, these findings elucidated the mechanisms by which these plant-derived compounds enhance the immune system, implying their potential utility as dietary supplements or as an alternative to conventional antibiotics.
RESUMO
In recent years, spider mites have caused considerable economic losses to global agriculture. However, currently available management strategies are limited because of the rapid development of resistance. In this study, Bacillus vallismortis NBIF-001 was isolated and evaluated for its acaricidal activity. NBIF-001 exhibited a significant lethal effect on spider mites within 48 h. The median lethal concentration (LC50) of the culture powders (3.2 × 1010 CFU/g) was 50.2 µg/mL for Tetranychus urticae (red form), 18.0 µg/mL for T. urticae (green form), and 15.7 µg/mL for Panonychus citri (McGregor). Cultivation optimisation experiments showed that when the number of spores increased, fermentation toxicity also increased. Moreover, field experiments demonstrated that NBIF-001 performed well in the biocontrol of P. citri, which showed a similar corrected field efficacy with the chemical control (67.1 ± 7.9% and 71.1 ± 6.4% after 14 days). Genomics analysis showed that NBIF-001 contains 231 factors and seven gene clusters of metabolites that may be involved in its acaricidal activity. Further bioassays of the fermentation supernatants showed that 50× dilution treatments killed 72.5 ± 5.4% of the mites in 48 h, which was similar with those of the broth. Bioassays of the supernatant proteins confirmed that various proteins exhibited acaricidal activity. Five candidate proteins were expressed and purified successfully. The bioassays showed that the small protein BVP8 exhibited significant acaricidal activity with an LC50 of 12.4 µg/mL (T. urticae). Overall, these findings suggest that B. vallismortis NBIF-001 is a potential biocontrol agent for spider mite management.
RESUMO
Chitosanase hydrolyzes ß-(1,4)-linked glycosidic bonds are used in chitosan chains to release oligosaccharide mixtures. Here, we cloned and expressed a cold-adapted chitosanase (CDA, Genbank: MW094131) using multi-copy expression plasmids (CDA1/2/3/4) in Pichia pastoris. We identified elevated CDA expression levels in multi-copy strains, with strain PCDA4 selected for high-density fermentation and enzyme-activity studies. The high-density fermentation approach generated a CDA yield of 20014.8 U/mL, with temperature and pH optimization experiments revealing the highest CDA activity at 20 °C and 5.0, respectively. CDA was stable at 10 °C and 20 °C. Thus, CDA could be used at low temperatures. CDA was then displayed on P. pastoris using multi-copy expression plasmids. Then, multi-copy strains were constructed and labelled as PCDA(1-3)-AGα1. Further studies showed that the expression of CDA(1-3)-AGα1 in multi-copy strains was increased, and that strain PCDA3-AGα1 was chosen for high-density fermentation and enzyme activity studies. By using a multi-copy expression and high-density fermentation approach, we observed CDA-AGα1 expression yields of 102415 U/g dry cell weight. These data showed that the displayed CDA exhibited improved thermostability and was more stable over wider temperature and pH ranges than free CDA. In addition, displayed CDA could be reused. Thus, the data showed that displaying enzymes on P. pastoris may have applications in industrial settings.