Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cancers (Basel) ; 13(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34771727

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Patients with inflammatory bowel disease (IBD) have a high risk of developing CRC. Inflammatory cytokines are regulated by complex gene networks and regulatory RNAs, especially microRNAs. MicroRNA-21 (miR-21) is amongst the most frequently upregulated microRNAs in inflammatory responses and cancer development. miR-21 has become a target for genetic and pharmacological regulation in various diseases. However, the association between inflammation and tumorigenesis in the gut is largely unknown. Hence, in this study, we generated a zebrafish model (ImiR-21) with inducible overexpression of miR-21 in the intestine. The results demonstrate that miR-21 can induce CRC or colitis-associated cancer (CAC) in ImiR-21 through the PI3K/AKT, PDCD4/TNF-α, and IL-6/STAT3 signaling network. miR-21 activated the PI3K/AKT and NF-κB signaling pathways, leading to initial inflammation; thereafter, miR-21 and TNF-α repressed PDCD4 and its tumor suppression activity. Eventually, active STAT3 stimulated a strong inflammatory response and activated the invasion/metastasis process of tumor cells. Hence, our findings indicate that miR-21 is critical for the development of CRC/CAC via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling networks.

2.
Acta Neuropathol Commun ; 9(1): 112, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158119

RESUMO

Tau pathology is instrumental in the gradual loss of neuronal functions and cognitive decline in tauopathies, including Alzheimer's disease (AD). Earlier reports showed that adenosine metabolism is abnormal in the brain of AD patients while consequences remained ill-defined. Herein, we aimed at investigating whether manipulation of adenosine tone would impact Tau pathology, associated molecular alterations and subsequent neurodegeneration. We demonstrated that treatment with an inhibitor (J4) of equilibrative nucleoside transporter 1 (ENT1) exerted beneficial effects in a mouse model of Tauopathy. Treatment with J4 not only reduced Tau hyperphosphorylation but also rescued memory deficits, mitochondrial dysfunction, synaptic loss, and abnormal expression of immune-related gene signatures. These beneficial effects were particularly ascribed to the ability of J4 to suppress the overactivation of AMPK (an energy reduction sensor), suggesting that normalization of energy dysfunction mitigates neuronal dysfunctions in Tauopathy. Collectively, these data highlight that targeting adenosine metabolism is a novel strategy for tauopathies.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Tauopatias/metabolismo , Tauopatias/patologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos
3.
Mol Neurobiol ; 58(5): 2204-2214, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33417224

RESUMO

Dual-specificity phosphatases (DUSPs) comprise a unique group of enzymes that dephosphorylate signaling proteins at both phospho-serine/threonine and phospho-tyrosine residues. Since Notch signaling is an essential pathway for neuronal cell fate determination and development that is also upregulated in Alzheimer's disease tissues, we sought to explore whether and how DUSPs may impact Notch processing. Our results show that overexpression of DUSP15 concomitantly and dose-dependently increased the steady-state levels of recombinant Notch (extracellular domain-truncated Notch, NotchΔE) protein and its cleaved product, Notch intracellular domain (NICD). The overall ratio of NotchΔE to NICD was unchanged by overexpression of DUSP15, suggesting that the effect is independent of γ-secretase. Interestingly, overexpression of DUSP15 also dose-dependently increased phosphorylated ERK1/2. Phosphorylated ERK1/2 is known to be positively correlated with Notch protein level, and we found that DUSP15-mediated regulation of Notch was dependent on ERK1/2 activity. Together, our findings reveal the existence of a previously unidentified DUSP15-ERK1/2-Notch signaling axis, which could potentially play a role in neuronal differentiation and neurological disease.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Neurônios/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Diferenciação Celular/fisiologia , Células HEK293 , Humanos , Fosforilação
4.
FASEB J ; 34(9): 12127-12146, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686865

RESUMO

Alzheimer's disease (AD) is characterized by a chronic decline in cognitive function and is pathologically typified by cerebral deposition of amyloid-ß peptide (Aß). The production of Aß is mediated by sequential proteolysis of amyloid precursor protein (APP) by ß- and γ-secretases, and has been implicated as the essential determinant of AD pathology. Previous studies have demonstrated that the level of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in the membrane may potentially modulate Aß production. Given that PI(4,5)P2 is produced by type 1 phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks), we sought to determine whether the level of PIP5K type Iα (PIP5K1A) can affect production of Aß by modulating the lipid composition of the membrane. Using a HEK-derived cell line that constitutively expresses yellow fluorescent protein-tagged APP (APP-YFP), we demonstrated that overexpression of PIP5K1A results in significant enhancement of non-amyloidogenic APP processing and a concomitant suppression of the amyloidogenic pathway, leading to a marked decrease in secreted Aß. Consistently, cells overexpressing PIP5K1A exhibited a significant redistribution of APP-YFP from endosomal compartments to the cell surface. Our findings suggest that PIP5K1A may play a critical role in governing Aß production by modulating membrane distribution of APP, and as such, the pathway may be a valuable therapeutic target for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ratos
5.
Nat Commun ; 11(1): 3147, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561720

RESUMO

Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade ß-catenin. Disruption of ß-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and ß-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.


Assuntos
Proteínas Argonautas/metabolismo , Senescência Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Germinativas/metabolismo , Animais , Proteínas Argonautas/genética , Caderinas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Inativação Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Ovário/citologia , Ovário/metabolismo , Retroelementos/genética , Transdução de Sinais , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Receptores Toll-Like/metabolismo , beta Catenina/metabolismo
6.
Adv Sci (Weinh) ; 7(2): 1901165, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993280

RESUMO

Finding an effective therapeutic regimen is an urgent demand for various neurodegenerative disorders including Huntington's disease (HD). For the difficulties in observing the dynamic aggregation and oligomerization process of mutant Huntingtin (mHtt) in vivo, the evaluation of potential drugs at the molecular protein level is usually restricted. By combing lifetime-based fluorescence microscopies and biophysical tools, it is showcased that a designed amphiphilic peptide, which targets the mHtt at an early stage, can perturb the oligomer assembly process nanoscopically, suppress the amyloid property of mHtt, conformationally transform the oligomers and/or aggregates of mHtt, and ameliorate mHtt-induced neurological damage and aggregation in cell and HD mouse models. It is also found that this amphiphilic peptide is able to transport to the brain and rescue the memory deficit through intranasal administration, indicating its targeting specificity in vivo. In summary, a biophotonic platform is provided to investigate the oligomerization/aggregation process in detail that offers insight into the design and effect of a targeted therapeutic agent for Huntington's disease.

7.
Cancer Res ; 79(21): 5550-5562, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31431462

RESUMO

Neuroblastoma is the most common malignant disease of infancy, and amplification of the MYCN oncogene is closely associated with poor prognosis. Recently, expression of MYCN was shown to be inversely correlated with aryl hydrocarbon receptor (AHR) expression in neuroblastoma, and overexpression of AHR downregulated MYCN expression, promoting cell differentiation. Therefore, we further investigated the potential of AHR to serve as a prognostic indicator or a therapeutic target in neuroblastoma. First, the clinical significance of AHR in neuroblastoma was examined. Positive AHR immunostaining strongly correlated with differentiated histology of neuroblastoma and predicted better survival for patients. The mouse xenograft model showed that overexpression of AHR significantly suppressed neuroblastoma tumor growth. In addition, activation of AHR by the endogenous ligand kynurenine inhibited cell proliferation and promoted cell differentiation in vitro and in vivo. kynurenine treatment also upregulated the expression of KISS1, a tumor metastasis suppressor, and attenuated metastasis in the xenograft model. Finally, analysis of KISS1 levels in neuroblastoma patient tumors using the R2: Genomics Analysis and Visualization Platform revealed that KISS1 expression positively correlated with AHR, and high KISS1 expression predicted better survival for patients. In conclusion, our results indicate that AHR is a novel prognostic biomarker for neuroblastoma, and that overexpression or activation of AHR offers a new therapeutic possibility for patients with neuroblastoma. SIGNIFICANCE: These findings show that AHR may function as a tumor suppressor in childhood neuroblastoma, potentially influencing the aetiologic and therapeutic targeting of the disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cinurenina/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Receptores de Hidrocarboneto Arílico/genética , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Criança , Pré-Escolar , Progressão da Doença , Feminino , Amplificação de Genes/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Humanos , Lactente , Recém-Nascido , Kisspeptinas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Proto-Oncogênica N-Myc/genética
8.
ACS Chem Neurosci ; 10(9): 4031-4042, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31404492

RESUMO

Aryl hydrocarbon receptor (AHR) signaling has been suggested to play roles in various physiological functions independent of its xenobiotic activity, including cell cycle regulation, immune response, and embryonic development. Several endogenous ligands were also identified by high-throughput screening techniques. However, the mechanism by which these molecules mediate AHR signaling in certain functions is still elusive. In this study, we investigated the possible pathway through which AHR and its endogenous ligands regulate neural development. We first identified two neuroactive steroids, 3α,5α-tetrahydrocorticosterone and 3α,5ß-tetrahydrocorticosterone (5α- and 5ß-THB), as novel AHR endogenous ligands through the use of an ultrasensitive dioxin-like compound bioassay and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS). We then treated zebrafish embryos with 5α- and 5ß-THB, which enhance the expression of neurogenesis marker HuC. Furthermore, 5α- and 5ß-THB both enhanced the expression of myelinating glial cell markers, sex determining region Y-box 10 (Sox10), and myelin-associated proteins myelin basic protein (Mbp) and improved the mobility of zebrafish larvae via the Ahr2 pathway. These results indicated that AHR mediates zebrafish neurogenesis and gliogenesis, especially the differentiation of oligodendrocyte or Schwann cells. Additionally, we showed that these molecules may induce neuroblastoma (NB) cell differentiation suggesting therapeutic potential of 5α- and 5ß-THB in NB treatment. In summary, our results reveal that 5α- and 5ß-THB are endogenous ligands of AHR and have therapeutic potential for NB treatment. By the interaction with THB, AHR signaling regulates various aspects of neural development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ligantes , Neuroblastoma/tratamento farmacológico , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Cromatografia Líquida/métodos , Corticosterona/análogos & derivados , Corticosterona/farmacologia , Neuroblastoma/metabolismo , Neurogênese/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Peixe-Zebra/metabolismo
9.
J Mol Med (Berl) ; 97(3): 325-339, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30612140

RESUMO

Oncogenic N-MYC (MYCN) is widely used as a biomarker in clinics for neuroblastoma (NB) patients; nevertheless, mechanism that underlines MYCN regulation remains elusive. In the present study, we identified calreticulin (CRT) as a novel MYCN suppressor that downregulated MYCN promoter activity and protein expression to modulate neuronal differentiation and stemness. Our data showed that CRT-mediated MYCN suppression led to increased neurite length and commensurate elevation in differentiation marker GAP-43. We examined effect of radiotherapy and discovered that ionizing radiation (IR) was able to augment CRT expression dose-dependently in NB. Interestingly, neuronal differentiation and neurosphere formation (NSF) of NB were not only co-modulated by IR and CRT but were also dependent on Ca2+-buffering domain (C-domain) of CRT. Mutagenesis analysis showed that C-domain was indispensable for CRT-mediated MYCN regulation in NB differentiation and NSF. Of note, IR-induced formation of neural stem-like neurospheres (NS) was significantly impaired in CRT-overexpressed NB cells. The occupancy of CRT on MYCN 5' proximal promoter was confirmed by chromatin immunoprecipitation assays, revealing potential CRT binding sites that coincided with transcription factor E2F1 binding elements. In addition, we identified a physical interaction between CRT and E2F1, and demonstrated that CRT occupancy on MYCN promoter prevented E2F1-mediated MYCN upregulation. In line with in vitro findings, hampered tumor latency and retarded tumor growth in xenograft model corroborated IR and CRT co-mediated neuronal differentiation of NB. Together, our data delineated a novel mechanism of CRT-mediated MYCN regulation and warranted further preclinical investigation towards new therapeutic strategy for NB. CRT suppresses MYCN expression and promotes neuronal differentiation in NB. CRT regulates MYCN via interaction with E2F1 and direct binding to MYCN promoter. Ca2+-buffering domain of CRT is critical in MYCN regulation and NB differentiation. CRT-MYCN axis impacts on NB stemness by modulating neurosphere formation. Xenograft model corroborates in vitro NB differentiation mediated by CRT and IR.


Assuntos
Calreticulina/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos SCID , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/patologia , Neuroblastoma/radioterapia , Neurogênese , Neurônios/fisiologia , Regiões Promotoras Genéticas , Radiação Ionizante
10.
J Vis Exp ; (131)2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29443039

RESUMO

We have developed a pair of cell-based reporter gene assays to quantitatively measure γ-secretase cleavage of distinct substrates. This manuscript describes procedures that may be used to monitor γ-secretase-mediated cleavage of either APP-C99 or Notch, using a Gal4 promoter-driven firefly luciferase reporter system. These assays were established by stably co-transfecting HEK293 cells with the Gal4-driven luciferase reporter gene and either the Gal4/VP16-tagged C-terminal fragment of APP (APP-C99; CG cells), or the Gal4/VP16-tagged Notch-ΔE (NΔE; NG cells). Using these reporter assays in parallel, we have demonstrated that an ErbB2 inhibitor, CL-387,785, can preferentially suppress γ-secretase cleavage of APP-C99 in CG cells, but not NΔE in NG cells. The differential responses exhibited by the CG and NG cells, when treated with CL-387,785, represent a preferred characteristic for γ-secretase modulators, and these responses are in stark contrast to the pan-inhibition of γ-secretase induced by DAPT. Our studies provide direct evidence that γ-secretase activities toward different substrates can be differentiated in a cellular context. These new assays may therefore be useful tools in drug discovery for improved AD therapies.


Assuntos
Secretases da Proteína Precursora do Amiloide/análise , Luciferases de Vaga-Lume/química , Receptores Notch/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Diferenciação Celular/fisiologia , Células HEK293 , Humanos , Luciferases de Vaga-Lume/metabolismo , Especificidade por Substrato , Transfecção
11.
Sci Rep ; 7(1): 11212, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894229

RESUMO

Neuroblastoma (NB) is a childhood cancer with a low survival rate and great metastatic potential. Vascular endothelial growth factor (VEGF), an angiogenesis factor, has been found to be involved in CRT-related neuronal differentiation of NB cells. In this study, we further confirmed the role VEGF in NB through mouse xenograft model and clinical analysis from NB patients. In xenograft experiments, CRT overexpression effectively inhibited the tumor growth. In addition, the mRNA and protein levels of VEGF and differentiation marker GAP-43 were upregulated by induced CRT expression. However, no significant correlation between the expression level of VEGF and microvessel density was observed in human NB tumors, suggesting a novel mechanism of VEGF participating in NB tumorigenesis through an angiogenesis-independent pathway. In NB patients' samples, mRNA expression levels of CRT and VEGF were positively correlated. Furthermore, positive VEGF expression by immunostaining of NB tumors was found to correlate well with histological grade of differentiation and predicted a favorable prognosis. In conclusion, our findings suggest that VEGF is a favorable prognostic factor of NB and might affect NB tumor behavior through CRT-driven neuronal differentiation rather than angiogenesis that might shed light on a novel therapeutic strategy to improve the outcome of NB.


Assuntos
Calreticulina/metabolismo , Diferenciação Celular , Expressão Gênica , Neuroblastoma/patologia , Neurônios/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Modelos Animais de Doenças , Proteína GAP-43/análise , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Transplante de Neoplasias , Neurônios/efeitos dos fármacos , Prognóstico
12.
Int J Mol Sci ; 18(9)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28902166

RESUMO

Protein homeostasis or proteostasis is a fundamental cellular property that encompasses the dynamic balancing of processes in the proteostasis network (PN). Such processes include protein synthesis, folding, and degradation in both non-stressed and stressful conditions. The role of the PN in neurodegenerative disease is well-documented, where it is known to respond to changes in protein folding states or toxic gain-of-function protein aggregation. Dual-specificity phosphatases have recently emerged as important participants in maintaining balance within the PN, acting through modulation of cellular signaling pathways that are involved in neurodegeneration. In this review, we will summarize recent findings describing the roles of dual-specificity phosphatases in neurodegeneration and offer perspectives on future therapeutic directions.


Assuntos
Fosfatases de Especificidade Dupla/fisiologia , Doenças Neurodegenerativas/metabolismo , Proteostase/fisiologia , Apoptose , Autofagia , Fosfatases de Especificidade Dupla/classificação , Estresse do Retículo Endoplasmático , Resposta ao Choque Térmico/fisiologia , Homeostase/fisiologia , Humanos , Estresse Oxidativo/fisiologia , Agregados Proteicos , Biossíntese de Proteínas , Dobramento de Proteína , Proteínas Quinases/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(15): E3129-E3138, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28351972

RESUMO

Proteolytic processing of amyloid precursor protein (APP) C-terminal fragments (CTFs) by γ-secretase underlies the pathogenesis of Alzheimer's disease (AD). An RNA interference screen using APP-CTF [99-residue CTF (C99)]- and Notch-specific γ-secretase interaction assays identified a unique ErbB2-centered signaling network that was predicted to preferentially govern the proteostasis of APP-C99. Consistently, significantly elevated levels of ErbB2 were confirmed in the hippocampus of human AD brains. We then found that ErbB2 effectively suppressed autophagic flux by physically dissociating Beclin-1 from the Vps34-Vps15 complex independent of its kinase activity. Down-regulation of ErbB2 by CL-387,785 decreased the levels of C99 and secreted amyloid-ß in cellular, zebrafish, and mouse models of AD, through the activation of autophagy. Oral administration of an ErbB2-targeted CL-387,785 for 3 wk significantly improves the cognitive functions of APP/presenilin-1 (PS1) transgenic mice. This work unveils a noncanonical function of ErbB2 in modulating autophagy and establishes ErbB2 as a therapeutic target for AD.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia , Encéfalo/patologia , Presenilina-1/metabolismo , Receptor ErbB-2/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Proteostase , Receptor ErbB-2/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
14.
Oncotarget ; 8(3): 4360-4372, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27966455

RESUMO

We assessed the impact of a multidisciplinary team care program on treatment outcomes in neuroblastoma patients. Newly diagnosed neuroblastoma patients received treatment under the Taiwan Pediatric Oncology Group (TPOG) N2002 protocol at the National Taiwan University Hospital beginning in 2002. A multidisciplinary team care approach that included nurse-led case management for patients treated under this protocol began in January 2010. Fifty-eight neuroblastoma patients, including 29 treated between 2002 and 2009 (Group 1) and 29 treated between 2010 and 2014 (Group 2), were enrolled in the study. The 5-year overall survival (OS) and event-free survival (EFS) rates for all 58 patients were 59% and 54.7%, respectively. Group 2 patients, who were treated after implementation of the multidisciplinary team care program, had better 3-year EFS (P = 0.046), but not OS (P = 0.16), rates than Group 1 patients. In a multivariate analysis, implementation of the multidisciplinary team approach was the only significant independent prognostic factor for neuroblastoma patients. In further subgroup analyses, the multidisciplinary team approach improved EFS, but not OS, in patients with stage 4 disease, those in the high-risk group, and those with non-MYCN amplified tumors. These data indicate a multidisciplinary team care approach improved survival outcomes in high-risk neuroblastoma patients. However, further investigation will be required to evaluate the long-term effects of this approach over longer follow-up periods.


Assuntos
Neuroblastoma/mortalidade , Equipe de Enfermagem/métodos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Estadiamento de Neoplasias , Neuroblastoma/patologia , Taxa de Sobrevida , Taiwan
15.
Biochem Biophys Res Commun ; 477(2): 283-9, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27301640

RESUMO

Tau plays important roles in the assembly and stabilization of the microtubule structure to facilitate axonal transport in mammalian brain. The intracellular tau aggregates to form paired helical filaments leading to neurodegenerative disorders, collectively called tauopathies. In our previous report, we established a zebrafish model to express tau-GFP to induce neuronal death, which could be directly traced in vivo. Recently, we used this model to screen 400 herbal extracts and found 45 of them to be effective on reducing tau-GFP-induced neuronal death. One of the effective herbal extracts is the Tripterygium wilfordii stem extract. HPLC analysis and functional assay demonstrated that epicatechin (EC) is the major compound of Tripterygium wilfordii stem extract to decrease the neurotoxicity induced by tau-GFP. Using a luciferase reporter assay in the zebrafish, we confirmed that EC could activate Nrf2-dependent antioxidant responses to significantly increase the ARE-controlled expression of luciferase reporter gene. These data suggest that EC from the Tripterygium wilfordii stem extract could diminish tau-GFP-induced neuronal death through the activation of Nrf2.


Assuntos
Catequina/administração & dosagem , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Tripterygium/química , Proteínas de Peixe-Zebra/metabolismo , Proteínas tau/metabolismo , Animais , Relação Dose-Resposta a Droga , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Peixe-Zebra , Proteínas tau/genética
16.
Oncotarget ; 7(14): 18774-86, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26959748

RESUMO

Neuroblastoma (NB) is a heterogeneous childhood cancer that requires multiple imaging modalities for accurate staging and surveillances. This study aims to investigate the utility of positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) and 18F-fluoro-dihydroxyphenylalanine (FDOPA) in determining the prognosis of NB. During 2007-2014, forty-two NB patients (male:female, 28:14; median age, 2.0 years) undergoing paired FDG and FDOPA PET scans at diagnosis were evaluated for the maximum standardized uptake value (SUV(max)) of FDG or FDOPA by the primary tumor. Patients with older age, advanced stages, or MYCN amplification showed higher FDG and lower FDOPA SUV(max) (all P < 0.02). Receiver operating characteristics analysis identified FDG SUV(max) ≥ 3.31 and FDOPA SUV(max) < 4.12 as an ultra-high-risk feature (PET-UHR) that distinguished the most unfavorable genomic types, i.e. segmental chromosomal alterations and/or MYCN amplification, at a sensitivity of 81.3% (54.4%-96.0%) and a specificity of 93.3% (68.1%-99.8%). Considering with age, stage, MYCN status, and anatomical image-defined risk factor, PET-UHR was an independent predictor of inferior event-free survival (multivariate hazard ratio, 4.9 [1.9-30.1]; P = 0.012). Meanwhile, the ratio between FDG and FDOPA SUV(max) (G:D) correlated positively with HK2 (Spearman's ρ = 0.86, P < 0.0001) and negatively with DDC (ρ = -0.58, P = 0.02) gene expression levels, which might suggest higher glycolytic activity and less catecholaminergic differentiation in NB tumors taking up higher FDG and lower FDOPA. In conclusion, the intensity of FDG and FDOPA uptake on diagnostic PET scans may predict the tumor behavior and complement the current risk stratification systems of NB.


Assuntos
Di-Hidroxifenilalanina/análogos & derivados , Fluordesoxiglucose F18/análise , Neuroblastoma/diagnóstico por imagem , Neuroblastoma/terapia , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/análise , Estudos de Coortes , Di-Hidroxifenilalanina/análise , Di-Hidroxifenilalanina/farmacocinética , Intervalo Livre de Doença , Feminino , Fluordesoxiglucose F18/farmacocinética , Genômica , Humanos , Lactente , Masculino , Neuroblastoma/genética , Neuroblastoma/metabolismo , Prognóstico , Compostos Radiofarmacêuticos/farmacocinética , Resultado do Tratamento
17.
Arch Pharm (Weinheim) ; 349(5): 327-41, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27027880

RESUMO

Copper and zinc have been found to contribute to the burden of amyloid-ß (Aß) aggregations in neurodegenerative Alzheimer's disease (AD). Dysregulation of these metals leads to the generation of reactive oxygen species (ROS) and eventually results in oxidative damage and accumulation of the Aß peptide, which are the key elements of the disease. Aiming to pursue the discovery of new modulators for the disease, we here rationally focused on conjugating the core hydroxyquinoline of the metal-protein attenuating compound PBT2 and the N-methylanilide analogous moiety of the Aß imaging agent to build a new type of multi-target modulators of Aß aggregations. We found that the N,N-dimethylanilinyl imines 7a, 8a, and the corresponding amines 7b, 8b exerted efficient inhibition of Cu(2+) - or Zn(2+) -induced Aß aggregations and significant disassembly of metal-mediated Aß aggregated fibrils. Further, 7a and 7b also exhibited significant ROC scavenging effects compared to PBT2. The results suggested that 7a and 7b are promising lead compounds for the development of a new therapy for AD.


Assuntos
Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Hidroxiquinolinas/química , Hidroxiquinolinas/uso terapêutico , Agregação Patológica de Proteínas/tratamento farmacológico , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Quelantes/síntese química , Quelantes/farmacologia , Quelantes/uso terapêutico , Clioquinol/análogos & derivados , Clioquinol/química , Clioquinol/farmacologia , Clioquinol/uso terapêutico , Cobre/efeitos adversos , Hidroxiquinolinas/síntese química , Hidroxiquinolinas/farmacologia , Relação Estrutura-Atividade , Zinco/efeitos adversos
18.
J Biomed Sci ; 23: 25, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26852117

RESUMO

BACKGROUND: The axonal tau protein is a tubulin-binding protein, which plays important roles in the formation and stability of the microtubule. Mutations in the tau gene are associated with familial forms of frontotemporal dementia with Parkinsonism linked to chromosome-17 (FTDP-17). Paired helical filaments of tau and extracellular plaques containing beta-amyloid are found in the brain of Alzheimer's disease (AD) patients. RESULTS: Transgenic models, including those of zebrafish, have been employed to elucidate the mechanisms by which tau protein causes neurodegeneration. In this study, a transient expression system was established to express GFP fusion proteins of zebrafish and human tau under the control of a neuron-specific HuC promoter. Approximately ten neuronal cells expressing tau-GFP in zebrafish embryos were directly imaged and traced by time-lapse recording, in order to evaluate the neurotoxicity induced by tau-GFP proteins. Expression of tau-GFP was observed to cause high levels of neuronal death. However, multiple signaling factors, such as Bcl2-L1, Nrf2, and GDNF, were found to effectively protect neuronal cells expressing tau-GFP from death. Treatment with chemical compounds that exert anti-oxidative or neurotrophic effects also resulted in a similar protective effect and maintained human tau-GFP protein in a phosphorylated state, as detected by antibodies pT212 and AT8. CONCLUSIONS: The novel finding of this study is that we established an expression system expressing tau-GFP in zebrafish embryos were directly imaged and traced by time-lapse recording to evaluate the neurotoxicity induced by tau-GFP proteins. This system may serve as an efficient in vivo imaging platform for the discovery of novel drugs against tauopathy.


Assuntos
Demência Frontotemporal/metabolismo , Neurônios/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Proteínas tau/metabolismo , Animais , Animais Geneticamente Modificados , Morte Celular , Cromossomos Humanos Par 17/genética , Cromossomos Humanos Par 17/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Neurônios/patologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas tau/genética
19.
PLoS One ; 10(5): e0125343, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951238

RESUMO

Neuroblastoma (NB) is a common neural crest-derived extracranial solid cancer in children. Among all childhood cancers, NB causes devastating loss of young lives as it accounts for 15% of childhood cancer mortality. Neuroblastoma, especially high-risk stage 4 NB with MYCN amplification has limited treatment options and associated with poor prognosis. This necessitates the need for novel effective therapeutic strategy. JARID1B, also known as KDM5B, is a histone lysine demethylase, identified as an oncogene in many cancer types. Clinical data obtained from freely-accessible databases show a negative correlation between JARID1B expression and survival rates. Here, we demonstrated for the first time the role of JARID1B in the enhancement of stem cell-like activities and drug resistance in NB cells. We showed that JARID1B may be overexpressed in either MYCN amplification (SK-N-BE(2)) or MYCN-non-amplified (SK-N-SH and SK-N-FI) cell lines. JARID1B expression was found enriched in tumor spheres of SK-N-BE(2) and SK-N-DZ. Moreover, SK-N-BE(2) spheroids were more resistant to chemotherapeutics as compared to parental cells. In addition, we demonstrated that JARID1B-silenced cells acquired a decreased propensity for tumor invasion and tumorsphere formation, but increased sensitivity to cisplatin treatment. Mechanistically, reduced JARID1B expression led to the downregulation of Notch/Jagged signaling. Collectively, we provided evidence that JARID1B via modulation of stemness-related signaling is a putative novel therapeutic target for treating malignant NB.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Histona Desmetilases com o Domínio Jumonji/genética , Células-Tronco Neoplásicas/patologia , Neuroblastoma/tratamento farmacológico , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Neuroblastoma/patologia , Prognóstico
20.
Mol Neurobiol ; 52(1): 758-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25288151

RESUMO

Calreticulin (CRT) has been previously correlated with the differentiation of neuroblastoma (NB), implying a favorable prognostic factor. Vascular endothelial growth factor (VEGF) has been reported to participate in the behavior of NB. This study investigated the association of CRT and VEGF-A in NB cells. The expressions of VEGF-A and HIF-1α, with overexpression or knockdown of CRT, were measured in three NB cells (SH-SY5Y, SK-N-DZ, and stNB-V1). An inducible CRT NB cell line and knockdown CRT stable cell lines were also established. The impacts of CRT overexpression on NB cell apoptosis, proliferation, and differentiation were also evaluated. We further examined the role of VEGF-A in the NB cell differentiation via VEGF receptor blockade. Constitutive overexpression of CRT led to NB cell differentiation without proliferation. Thus, an inducible CRT stNB-V1 cell line was generated by a tetracycline-regulated gene system. CRT overexpression increased VEGF-A and HIF-1α messenger RNA (mRNA) expressions in SH-SY5Y, SK-N-DZ, and stNB-V1 cells. CRT overexpression also enhanced VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. Knockdown of CRT decreased VEGF-A and HIF-1α mRNA expressions and lowered VEGF-A protein expression and secretion level in conditioned media in different NB cell lines. We further demonstrated that NB cell apoptosis was not affected by CRT overexpression in stNB-V1 cells. Nevertheless, overexpression of CRT suppressed cell proliferation and enhanced cell differentiation in stNB-V1 cells, whereas blockage of VEGFR-1 markedly suppressed the expression of neuron-specific markers including GAP43, NSE2, and NFH, as well as TrkA, a molecular marker indicative of NB cell differentiation. Our findings suggest that VEGF-A is involved in CRT-related neuronal differentiation in NB. Our work may provide important information for developing a new therapeutic strategy to improve the outcome of NB patients.


Assuntos
Calreticulina/metabolismo , Neuroblastoma/genética , Fator A de Crescimento do Endotélio Vascular/genética , Apoptose , Biomarcadores/metabolismo , Calreticulina/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA