Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347291

RESUMO

RCI2/PMP3s are involved in biotic and abiotic stresses and have an influence on the regulation of many genes. RCI2/PMP3 genes, which particularly encode small membrane proteins of the PMP3 family, are involved in abiotic stress responses in plants. In this work, in silico studies were used to investigate RCI2's potential function in stress tolerance and organogenesis. We conducted an extensive study of the RCI2 gene family and revealed 36 RCI2 genes from cotton species that were distributed over 36 chromosomes of the cotton genome. Functional and phylogenetic examination of the RCI2/PMP3 gene family has been studied in Arabidopsis, but in cotton, the RCI2/PMP3 genes have not yet been studied. Phylogenetic and sequencing studies revealed that cotton RCI2s are conserved, with most of them categorized into six distinct clades. A chromosome distribution and localization study indicated that cotton RCI2 genes were distributed unevenly on 36 chromosomes with segmental duplications, suggesting that the cotton RCI2 family is evolutionarily conserved. Many cis-elements related to stress responsiveness, development, and hormone responsiveness were detected in the promoter regions of the cotton RCI2. Moreover, the 36 cotton RCI2s revealed tissue-specific expression patterns in the development of cotton performed by transcriptome analysis. Gene structure analysis indicated that nearly all RCI2 genes have two exons and one intron. All of the cotton RCI2 genes were highly sensitive to drought, abscisic acid, salt, and cold treatments, demonstrating that they may be employed as genetic objects to produce stress-resistant plants.

2.
J Biomol Struct Dyn ; : 1-13, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837436

RESUMO

Drought has emerged as a significant global concern in recent years, leading to a proliferation of research on sorghum, an important drought resistant crop. Consequently, conducting a bibliometric analysis of said publications has the potential to yield insights into current areas of interest and potential avenues for future research. The present study utilized the Web of Science database to gather literature published between the years 2000 and 2022. The search terms 'drought' AND 'sorghum' was employed to identify relevant publications and as a result, 1731 publications were obtained. The bibliometric analysis of the obtained articles was conducted using VOSviewer software (1.6.19). The keyword 'sorghum' was found to have the highest frequency, with a total link strength of 4238. This keyword exhibited a strong association with the terms 'drought' and 'drought tolerance'. The average number of citations for the 100 most-cited articles was 509.2. The journal Crop Science attained the top position with 60 published articles and secured the highest number of citations with a count of 2795. The academic works of Graeme L. Hammer, comprising 40 articles affiliated with the University of Queensland (UQ), have garnered a total of 3612 citations. Similarly, the same university has produced 112 articles that have been cited 5551 times, thereby establishing it as the most frequently cited organization, with Hammer receiving the highest citation count. UQ had a total of 41 collaborators, with a cumulative link strength of 115. The USA has the highest number of articles pertaining to drought and sorghum. The published literature has focused on abiotic stress tolerance, genetic analysis, and physiological traits, among others. It is anticipated that there will be a substantial rise in the quantity of worldwide publications pertaining to drought and sorghum. The USA offered a significant contribution to this emerging field.Communicated by Ramaswamy H. Sarma.

3.
Cereal Res Commun ; : 1-24, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37361481

RESUMO

Over the past few decades, the amount of ultraviolet-B radiation (UV-B) reaching the earth's surface has been altered due to climate change and stratospheric ozone dynamics. This narrow but highly biologically active spectrum of light (280-320 nm) can affect plant growth and development. Depletion of ozone and climate change are interlinked in a very complicated manner, i.e., significantly contributing to each other. The interaction of climate change, ozone depletion, and changes in UV-B radiation negatively affects the growth, development, and yield of plants. Furthermore, this interaction will become more complex in the coming years. The ozone layer reduction is paving a path for UV-B radiation to impact the surface of the earth and interfere with the plant's normal life by negatively affecting the plant's morphology and physiology. The nature and degree of the future response of the agricultural ecosystem to the decreasing or increasing UV-B radiation in the background of climate change and ozone dynamics are still unclear. In this regard, this review aims to elucidate the effects of enhanced UV-B radiation reaching the earth's surface due to the depletion of the ozone layer on plants' physiology and the performance of major cereals.

4.
Front Genet ; 14: 1150616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252661

RESUMO

Sorghum is emerging as a model crop for functional genetics and genomics of tropical grasses with abundant uses, including food, feed, and fuel, among others. It is currently the fifth most significant primary cereal crop. Crops are subjected to various biotic and abiotic stresses, which negatively impact on agricultural production. Developing high-yielding, disease-resistant, and climate-resilient cultivars can be achieved through marker-assisted breeding. Such selection has considerably reduced the time to market new crop varieties adapted to challenging conditions. In the recent years, extensive knowledge was gained about genetic markers. We are providing an overview of current advances in sorghum breeding initiatives, with a special focus on early breeders who may not be familiar with DNA markers. Advancements in molecular plant breeding, genetics, genomics selection, and genome editing have contributed to a thorough understanding of DNA markers, provided various proofs of the genetic variety accessible in crop plants, and have substantially enhanced plant breeding technologies. Marker-assisted selection has accelerated and precised the plant breeding process, empowering plant breeders all around the world.

5.
Transgenic Res ; 32(1-2): 77-93, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36806962

RESUMO

Auxins regulate several characteristics of plant development and growth. Here, we characterized a new transcriptional activator SIARRI which binds specific DNA sequences and was revealed in Arabidopsis (ARR1). SIARRI acts as a two-component response regulator and its Arabidopsis homologous gene is AT3G16857. It belongs to the subfamily of type-B response regulators in the cytokinin signaling pathway. The study aimed to characterize the transgenic Micro-Tom plants by the overexpression of Solanum lycopersicum two-component response regulator ARR1. Overexpression of SIARRI results in a pleiotropic phenotype during fruit development and ripening. This study indicates that SIARRI is a primary regulator of leaf morphology and fruit development. Moreover, overexpressed plants showed variations in growth related to auxin as well as shorter hypocotyl elongation, enlarged leaf vascularization, and decreased apical dominance. The qRT-PCR investigation revealed that expression was downregulated at the breaker stage and high at Br+6 at various stages of fruit growth and ripening. In contrast to the fruit color, lycopene and ß-carotene concentrations in red-yellow overexpression line fruits were reduced significantly, and also slightly reduced in some red fruits. The quantity of ß-carotene in the transgenic fruits was lower than that of lycopene. This study showed that this gene might be a new transcriptional activator in fruit development and ripening. Furthermore, this study will provide new insights into tomato fruit ripening.


Assuntos
Arabidopsis , Solanum lycopersicum , Frutas/genética , Licopeno/metabolismo , beta Caroteno/metabolismo , Solanum lycopersicum/genética , Etilenos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA