Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 307: 119521, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623573

RESUMO

Health effects of particulate matter (PM) from aircraft engines have not been adequately studied since controlled laboratory studies reflecting realistic conditions regarding aerosols, target tissue, particle exposure and deposited particle dose are logistically challenging. Due to the important contributions of aircraft engine emissions to air pollution, we employed a unique experimental setup to deposit exhaust particles directly from an aircraft engine onto reconstituted human bronchial epithelia (HBE) at air-liquid interface under conditions similar to in vivo airways to mimic realistic human exposure. The toxicity of non-volatile PM (nvPM) from a CFM56-7B26 aircraft engine was evaluated under realistic engine conditions by sampling and exposing HBE derived from donors of normal and compromised health status to exhaust for 1 h followed by biomarker analysis 24 h post exposure. Particle deposition varied depending on the engine thrust levels with 85% thrust producing the highest nvPM mass and number emissions with estimated surface deposition of 3.17 × 109 particles cm-2 or 337.1 ng cm-2. Transient increase in cytotoxicity was observed after exposure to nvPM in epithelia derived from a normal donor as well as a decrease in the secretion of interleukin 6 and monocyte chemotactic protein 1. Non-replicated multiple exposures of epithelia derived from a normal donor to nvPM primarily led to a pro-inflammatory response, while both cytotoxicity and oxidative stress induction remained unaffected. This raises concerns for the long-term implications of aircraft nvPM for human pulmonary health, especially in occupational settings.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Aeronaves , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
2.
Commun Biol ; 2: 90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854482

RESUMO

Aircraft emissions contribute to local and global air pollution. Health effects of particulate matter (PM) from aircraft engines are largely unknown, since controlled cell exposures at relevant conditions are challenging. We examined the toxicity of non-volatile PM (nvPM) emissions from a CFM56-7B26 turbofan, the world's most used aircraft turbine using an unprecedented exposure setup. We combined direct turbine-exhaust sampling under realistic engine operating conditions and the Nano-Aerosol Chamber for In vitro Toxicity to deposit particles onto air-liquid-interface cultures of human bronchial epithelial cells (BEAS-2B) at physiological conditions. We evaluated acute cellular responses after 1-h exposures to diluted exhaust from conventional or alternative fuel combustion. We show that single, short-term exposures to nvPM impair bronchial epithelial cells, and PM from conventional fuel at ground-idle conditions is the most hazardous. Electron microscopy of soot reveals varying reactivity matching the observed cellular responses. Stronger responses at lower mass concentrations suggest that additional metrics are necessary to evaluate health risks of this increasingly important emission source.


Assuntos
Aeronaves , Brônquios , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/efeitos adversos , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar , Biomarcadores , Exposição Ambiental/efeitos adversos , Humanos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo
3.
Environ Pollut ; 239: 661-669, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29709837

RESUMO

Ultrafine (<100 nm) particles related to traffic are of high environmental and human health concern, as they are supposed to be more toxic than larger particles. In the present study transmission electron microscopy (TEM) is applied to obtain a concrete picture on the nature, morphology and chemical composition of non-volatile ultrafine particles in the exhaust of state-of-the-art, Euro 6b, Gasoline and Diesel vehicles. The particles were collected directly on TEM grids, at the tailpipe, downstream of the after-treatment system, during the entire duration of typical driving cycles on the chassis dynamometer. Based on TEM imaging coupled with Energy Dispersive X-ray (EDX) analysis, numerous ultrafine particles could be identified, imaged and analyzed chemically. Particles <10 nm were rarely detected. The ultrafine particles can be distinguished into the following types: soot, ash-bearing soot and ash. Ash consists of Ca, P, Mg, Zn, Fe, S, and minor Sn compounds. Most elements originate from lubricating oil additives; Sn and at least part of Fe are products of engine wear; minor W ±â€¯Si-bearing nearly spherical particles in Diesel exhaust derive from catalytic coating material. Ultrafine ash particles predominate over ultrafine soot or are nearly equal in amount, in contrast to emissions of larger sizes where soot is by far the prevalent particle type. This is probably due to the low ash amount per volume fraction in the total emissions, which does not favor formation of large ash agglomerates, opposite to soot, which is abundant and thus easily forms agglomerates of sizes larger than those of the ultrafine range. No significant differences of ultrafine particle characteristics were identified among the tested Gasoline and Diesel vehicles and driving cycles. The present TEM study gives information also on the imaging and chemical composition of the solid fraction of the unregulated sub-23 nm size category particles.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Emissões de Veículos/análise , Condução de Veículo , Elétrons , Gasolina/análise , Humanos , Microscopia Eletrônica de Transmissão , Veículos Automotores , Tamanho da Partícula , Fuligem/análise
4.
Environ Sci Technol ; 48(18): 10975-83, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25180674

RESUMO

The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.


Assuntos
Aeronaves/estatística & dados numéricos , Material Particulado/análise , Fuligem/análise , Emissões de Veículos/análise , Microscopia Eletrônica de Transmissão , Tamanho da Partícula
5.
Environ Sci Technol ; 47(24): 14495-501, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24274188

RESUMO

Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (<0.5-5 µm) are abundant upstream of the DPF and are ash-free or contain notably little attached ash. Post-DPF soot agglomerates are very few, typically large (>1-5 µm, exceptionally 13 µm), rarely <0.5 µm, and contain abundant ash carried mostly from inside the DPF. The ash that reaches the atmosphere also occurs as separate aggregates ca. 0.2-2 µm in size consisting of sintered primary phases, ca. 20-400 nm large. Insoluble particles of these sizes may harm the respiratory and cardiovascular systems. The DPF probably promotes breakout of large soot agglomerates (mostly ash-bearing) by favoring sintering. Noble metals detached from the DOC coating may reach the ambient air. Finally, very few agglomerates of Fe-oxide nanoparticles form newly from engine wear and escape into the atmosphere.


Assuntos
Metais/análise , Microscopia Eletrônica de Transmissão , Veículos Automotores , Material Particulado/química , Emissões de Veículos/análise , Compostos Férricos/química , Filtração , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA