Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Environ Contam Toxicol ; 85(1): 55-72, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438517

RESUMO

The oceans become increasingly contaminated as a result of global industrial production and consumer behaviour, and this affects wildlife in areas far removed from sources of pollution. Migratory seabirds such as storm-petrels may forage in areas with different contaminant levels throughout the annual cycle and may show a carry-over of mercury from the winter quarters to the breeding sites. In this study, we compared mercury levels among seven species of storm-petrels breeding on the Antarctic South Shetlands and subantarctic Kerguelen Islands, in temperate waters of the Chatham Islands, New Zealand, and in temperate waters of the Pacific off Mexico. We tested for differences in the level of contamination associated with breeding and inter-breeding distribution and trophic position. We collected inert body feathers and metabolically active blood samples in ten colonies, reflecting long-term (feathers) and short-term (blood) exposures during different periods ranging from early non-breeding (moult) to late breeding. Feathers represent mercury accumulated over the annual cycle between two successive moults. Mercury concentrations in feathers ranged over more than an order of magnitude among species, being lowest in subantarctic Grey-backed Storm-petrels (0.5 µg g-1 dw) and highest in subtropical Leach's Storm-petrels (7.6 µg g-1 dw, i.e. posing a moderate toxicological risk). Among Antarctic Storm-petrels, Black-bellied Storm-petrels had threefold higher values than Wilson's Storm-petrels, and in both species, birds from the South Shetlands (Antarctica) had threefold higher values than birds from Kerguelen (subantarctic Indian Ocean). Blood represents mercury taken up over several weeks, and showed similar trends, being lowest in Grey-backed Storm-petrels from Kerguelen (0.5 µg g-1 dw) and highest in Leach's Storm-petrels (3.6 µg g-1 dw). Among Antarctic storm-petrels, species differences in the blood samples were similar to those in feathers, but site differences were less consistent. Over the breeding season, mercury decreased in blood samples of Antarctic Wilson's Storm-petrels, but did not change in Wilson's Storm-petrels from Kerguelen or in Antarctic Black-bellied Storm-petrels. In summary, we found that mercury concentrations in storm-petrels varied due to the distribution of species and differences in prey choice. Depending on prey choices, Antarctic storm-petrels can have similar mercury concentrations as temperate species. The lowest contamination was observed in subantarctic species and populations. The study shows how seabirds, which accumulate dietary pollutants in their tissues in the breeding and non-breeding seasons, can be used to survey marine pollution. Storm-petrels with their wide distributions and relatively low trophic levels may be especially useful, but more detailed knowledge on their prey choice and distributions is needed.


Assuntos
Mercúrio , Animais , Mercúrio/análise , Regiões Antárticas , Monitoramento Ambiental , Aves , Oceano Índico , Plumas/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-29953949

RESUMO

Wilson's storm-petrels (Oceanites oceanicus) are the smallest marine birds breeding in Antarctica, where events like snowstorms often prevent parents from providing food daily for their offspring. To minimize energy expenses, Wilson's storm-petrel chicks can reduce their metabolism and body temperature by entering hypothermia. Hypothermia is reported to impact development, hence we hypothesized that hypothermia will be majorly used after long fasting periods. Chick development in a breeding colony of Wilson's storm-petrels on the South Shetland Islands was monitored daily during three consecutive summers by recording chicks' body mass and temperature, as well as environmental parameters. Provisioning, and body conditions were highest in 2017, and chicks became hypothermic most frequently in 2016. Body temperature was influenced by age, mass, body condition, and minimal nocturnal temperatures. While most chicks were able to maintain stable body temperatures when not fed for one day, some chicks' body temperatures decreased by up to 21 °C. Age did not differ between those two groups, but chicks maintaining their active body temperatures had higher body conditions. Snowstorms were typically followed by several days of unreliable food provisioning and continuous days of fasting. Most chicks were hypothermic during this time, and were hence able to survive periods of food shortages, reverse their low body temperatures after the next feeding event, and regain body mass. We conclude that hypothermia is a strong survival strategy to endure times of fasting, which might be necessary for Antarctic storm-petrel chicks to reach adulthood. However, in future scenarios, which may include more frequent snowstorms due to climate change, malnourishment could lead to more frequent use of hypothermia, which could affect chicks' development.


Assuntos
Aves/fisiologia , Temperatura Baixa , Comportamento Alimentar , Hipotermia/fisiopatologia , Neve , Animais , Regiões Antárticas , Aves/crescimento & desenvolvimento , Temperatura Corporal , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA