Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 352: 107462, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37141802

RESUMO

NMR is a key technology for metabolomics because of its robustness and reproducibility. Herein we discuss practical considerations that extend the utility of NMR spectroscopy. First, the long T1 spin relaxation times of small molecules limits high-throughput data acquisition because most experimental time is lost while waiting for signal recovery. In principle, the addition of a small amount of commercially-available paramagnetic gadolinium chelate allows cost-effective and efficient high-throughput mixture analysis with correct concentration determination. However, idle time caused by slow temperature regulation during sample exchanges, poses a next constraint. We show how, with proper care, NMR sample scanning times can be reduced additionally by a factor of two. Lastly, we describe how equidistant bucketing is a simple and fast procedure for metabolomic fingerprinting. The combination of these advancements help to make NMR metabolomics more versatile than it is today.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Reprodutibilidade dos Testes , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Meios de Contraste
2.
J Proteome Res ; 22(1): 16-25, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36469426

RESUMO

Metabolic perturbations and inflammatory mediators play a fundamental role in both early and late adverse post-acute ischemic stroke outcomes. Using data from the observational MAGIC (MArker bioloGici nell'Ictus Cerebrale) study, we evaluated the effect of 130 serum metabolic features, using a nuclear magnetic spectroscopy approach, on the following outcomes: hemorrhagic transformation at 24 h after stroke, non-response to intravenous thrombolytic treatment with the recombinant tissue plasminogen activator (rt-PA), and the 3 month functional outcome. Blood circulating metabolites, lipoproteins, and inflammatory markers were assessed at the baseline and 24 h after rt-PA treatment. Adjusting for the major determinants for unfavorable outcomes (i.e., age, sex, time onset-to-treatment, etc.), we found that acetone and 3-hydroxybutyrate were associated with symptomatic hemorrhagic transformation and with non-response to rt-PA; while 24 h after rt-PA, levels of triglycerides high-density lipoprotein (HDL) and triglycerides low-density lipoprotein (LDL) were associated with 3 month mortality. Cholesterol and phospholipids levels, mainly related to smaller and denser very low-density lipoprotein (VLDL) and LDL subfractions were associated with 3 month poor functional outcomes. We also reported associations between baseline 24 h relative variation (Δ) in VLDL subfractions and ΔC-reactive protein, Δinterleukin-10 levels with hemorrhagic transformation. All observed metabolic changes reflect a general condition of energy failure, oxidative stress, and systemic inflammation that characterize the development of adverse outcomes.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Humanos , Isquemia Encefálica/tratamento farmacológico , AVC Isquêmico/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do Tratamento
3.
NPJ Parkinsons Dis ; 8(1): 14, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136088

RESUMO

Parkinson's disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress.

4.
EBioMedicine ; 76: 103864, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35131692

RESUMO

INTRODUCTION: Body-mass index is a major determinant of left-ventricular-mass (LVM). Bariatric-metabolic surgery (BMS) reduces cardiovascular mortality. Its mechanism of action, however, often encompasses a weight-dependent effect. In this translational study, we aimed at investigating the mechanisms by which BMS leads to LVM reduction and functional improvement. METHODS: Twenty patients (45.2 ± 8.5years) were studied with echocardiography at baseline and at 1,6,12 and 48 months after sleeve-gastrectomy (SG). Ten Wistar rats aged 10-weeks received high-fat diet ad libitum for 10 weeks before and 4 weeks after SG or sham-operation. An oral-glucose-tolerance-test was performed to measure whole-body insulin-sensitivity. Plasma metabolomics was analysed in both human and rodent samples. RNA quantitative Real-Time PCR and western blots were performed in rodent heart biopsies. The best-fitted partial-least-square discriminant-analysis model was used to explore the variable importance in the projection score of all metabolites. FINDINGS: Echocardiographic LVM (-12%,-23%,-28% and -43% at 1,6,12 and 48 months, respectively) and epicardial fat decreased overtime after SG in humans while insulin-sensitivity improved. In rats, SG significantly reduced LVM and epicardial fat, enhanced ejection-fraction and improved insulin-sensitivity compared to sham-operation. Metabolomics showed a progressive decline of plasma branched-chain amino-acids (BCAA), alanine, lactate, 3-OH-butyrate, acetoacetate, creatine and creatinine levels in both humans and rodents. Hearts of SG rats had a more efficient BCAA, glucose and fatty-acid metabolism and insulin signaling than sham-operation. BCAAs in cardiomyocyte culture-medium stimulated lipogenic gene transcription and reduced mRNA levels of key mitochondrial ß-oxidation enzymes promoting lipid droplet accumulation and glycolysis. INTERPRETATION: After SG a prompt and sustained decrease of the LVM, epicardial fat and insulin resistance was found. Animal and in vitro studies showed that SG improves cardiac BCAA metabolism with consequent amelioration of fat oxidation and insulin signaling translating into decreased intra-myocytic fat accumulation and reduced lipotoxicity. FUNDING: This work was supported by the University of Rome Sapienza.


Assuntos
Cirurgia Bariátrica , Resistência à Insulina , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Gastrectomia , Humanos , Ratos , Ratos Wistar
5.
J Proteome Res ; 20(10): 4758-4770, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473513

RESUMO

Here, we present an integrated multivariate, univariate, network reconstruction and differential analysis of metabolite-metabolite and metabolite-lipid association networks built from an array of 18 serum metabolites and 110 lipids identified and quantified through nuclear magnetic resonance spectroscopy in a cohort of 248 patients, of which 22 died and 82 developed a poor functional outcome within 3 months from acute ischemic stroke (AIS) treated with intravenous recombinant tissue plasminogen activator. We explored differences in metabolite and lipid connectivity of patients who did not develop a poor outcome and who survived the ischemic stroke from the related opposite conditions. We report statistically significant differences in the connectivity patterns of both low- and high-molecular-weight metabolites, implying underlying variations in the metabolic pathway involving leucine, glycine, glutamine, tyrosine, phenylalanine, citric, lactic, and acetic acids, ketone bodies, and different lipids, thus characterizing patients' outcomes. Our results evidence the promising and powerful role of the metabolite-metabolite and metabolite-lipid association networks in investigating molecular mechanisms underlying AIS patient's outcome.


Assuntos
AVC Isquêmico , Terapia Trombolítica , Humanos , AVC Isquêmico/tratamento farmacológico , Lipídeos , Metabolômica , Terapia Trombolítica/efeitos adversos , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do Tratamento
6.
Cancer Metab ; 9(1): 29, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344464

RESUMO

BACKGROUND: Men with African ancestry are more likely to develop aggressive prostate cancer (PCa) and to die from this disease. The study of PCa in the South African population represents an opportunity for biomedical research due to the high prevalence of aggressive PCa. While inflammation is known to play a significant role in PCa progression, its association with tumor stage in populations of African descent has not been explored in detail. Identification of new metabolic biomarkers of inflammation may improve diagnosis of patients with aggressive PCa. METHODS: Plasma samples were profiled from 41 South African men with PCa using nuclear magnetic resonance (NMR) spectroscopy. A total of 41 features, including metabolites, lipid classes, total protein, and the inflammatory NMR markers, GlycA, and GlycB, were quantified from each NMR spectrum. The Bruker's B.I.-LISA protocols were used to characterize 114 parameters related to the lipoproteins. The unsupervised KODAMA method was used to stratify the patients of our cohort based on their metabolic profile. RESULTS: We found that the plasma of patients with very high risk, aggressive PCa and high level of C-reactive protein have a peculiar metabolic phenotype (metabotype) characterized by extremely high levels of GlycA and GlycB. The inflammatory processes linked to the higher level of GlycA and GlycB are characterized by a deep change of the plasma metabolome that may be used to improve the stratification of patients with PCa. We also identified a not previously known relationship between high values of VLDL and low level of GlycB in a different metabotype of patients characterized by lower-risk PCa. CONCLUSIONS: For the first time, a portrait of the metabolic changes in African men with PCa has been delineated indicating a strong association between inflammation and metabolic profiles. Our findings indicate how the metabolic profile could be used to identify those patients with high level of inflammation, characterized by aggressive PCa and short life expectancy. Integrating a metabolomic analysis as a tool for patient stratification could be important for opening the door to the development of new therapies. Further investigations are needed to understand the prevalence of an inflammatory metabotype in patients with aggressive PCa.

7.
Mech Ageing Dev ; 194: 111426, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33385396

RESUMO

Advanced age is the major risk factor for idiopathic Parkinson's disease (PD), but to date the biological relationship between PD and ageing remains elusive. Here we describe the rationale and the design of the H2020 funded project "PROPAG-AGEING", whose aim is to characterize the contribution of the ageing process to PD development. We summarize current evidences that support the existence of a continuum between ageing and PD and justify the use of a Geroscience approach to study PD. We focus in particular on the role of inflammaging, the chronic, low-grade inflammation characteristic of elderly physiology, which can propagate and transmit both locally and systemically. We then describe PROPAG-AGEING design, which is based on the multi-omic characterization of peripheral samples from clinically characterized drug-naïve and advanced PD, PD discordant twins, healthy controls and "super-controls", i.e. centenarians, who never showed clinical signs of motor disability, and their offspring. Omic results are then validated in a large number of samples, including in vitro models of dopaminergic neurons and healthy siblings of PD patients, who are at higher risk of developing PD, with the final aim of identifying the molecular perturbations that can deviate the trajectories of healthy ageing towards PD development.


Assuntos
Envelhecimento/metabolismo , Pesquisa Biomédica , Encéfalo/metabolismo , Geriatria , Mediadores da Inflamação/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/patologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Europa (Continente) , Feminino , Genômica , Humanos , Masculino , Metabolômica , Atividade Motora , Degeneração Neural , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Projetos de Pesquisa , Transdução de Sinais , Estudos em Gêmeos como Assunto
8.
Vet Q ; 40(1): 1-15, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31858882

RESUMO

Background: Displaced abomasum (DA) is a condition of dairy cows that severely impacts animal welfare and causes huge economic losses.Objective: To assess the metabolic status of the disease using metabolomics in serum, urine and liver samples aimed at both water soluble and lipid soluble fractions.Methods: Fifty Holstein multiparous cows with DA (42 left, 8 right) and 20 clinically healthy Holstein multiparous cows were used. Left DA was associated with concomitant ketosis in 19 animals and right in two. NMR-based metabolomics approach and hematological and biochemical analyses were performed. Statistical analysis was carried out on 1H-NMR data after they have been normalized using PQN method.Results: Contrary to generated PCA score plots the OPLS-supervised method revealed differences between healthy animals and diseased ones based on serum water-soluble samples. While water and lipid soluble metabolites decreased in serum samples, fatty acid fractions and cholesterol were increased in liver samples in DA affected cows. The metabolomic and chemical profiles clearly revealed that cows with DA (especially with LDA) were at risk of ketosis and fatty liver. Serum hippuric acid concentration was significantly higher in healthy cows in comparison with LDA, whereas serum glycine concentration was reported higher for healthy when compared to RDA affected animals.Conclusion: A biochemical network and pathway mapping revealed 'valine, leucine and isoleucine biosynthesis' and 'phenylalanine, tyrosine and tryptophan biosynthesis' as the most probable altered metabolic pathway in DA condition. Serum was advocated as the optimal biological matrix for the 1H-NMR analysis.


Assuntos
Doenças dos Bovinos/sangue , Doenças dos Bovinos/fisiopatologia , Gastropatias/veterinária , Abomaso/diagnóstico por imagem , Animais , Biomarcadores/sangue , Biomarcadores/urina , Bovinos , Doenças dos Bovinos/diagnóstico por imagem , Doenças dos Bovinos/urina , Indústria de Laticínios , Feminino , Hipuratos/sangue , Lipídeos/sangue , Fígado , Espectroscopia de Ressonância Magnética , Metaboloma , Gastropatias/sangue , Gastropatias/diagnóstico por imagem , Gastropatias/fisiopatologia
9.
J Med Chem ; 62(4): 1932-1958, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30715876

RESUMO

Monoacylglycerol lipase (MAGL) is the enzyme degrading the endocannabinoid 2-arachidonoylglycerol, and it is involved in several physiological and pathological processes. The therapeutic potential of MAGL is linked to several diseases, including cancer. The development of MAGL inhibitors has been greatly limited by the side effects associated with the prolonged MAGL inactivation. Importantly, it could be preferable to use reversible MAGL inhibitors in vivo, but nowadays only few reversible compounds have been developed. In the present study, structural optimization of a previously developed class of MAGL inhibitors led to the identification of compound 23, which proved to be a very potent reversible MAGL inhibitor (IC50 = 80 nM), selective for MAGL over the other main components of the endocannabinoid system, endowed of a promising antiproliferative activity in a series of cancer cell lines and able to block MAGL both in cell-based as well as in vivo assays.


Assuntos
Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Encéfalo/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Monoacilglicerol Lipases/metabolismo , Piperidinas/síntese química , Piperidinas/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
10.
Angew Chem Int Ed Engl ; 58(4): 968-994, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-29999221

RESUMO

Metabolomics deals with the whole ensemble of metabolites (the metabolome). As one of the -omic sciences, it relates to biology, physiology, pathology and medicine; but metabolites are chemical entities, small organic molecules or inorganic ions. Therefore, their proper identification and quantitation in complex biological matrices requires a solid chemical ground. With respect to for example, DNA, metabolites are much more prone to oxidation or enzymatic degradation: we can reconstruct large parts of a mammoth's genome from a small specimen, but we are unable to do the same with its metabolome, which was probably largely degraded a few hours after the animal's death. Thus, we need standard operating procedures, good chemical skills in sample preparation for storage and subsequent analysis, accurate analytical procedures, a broad knowledge of chemometrics and advanced statistical tools, and a good knowledge of at least one of the two metabolomic techniques, MS or NMR. All these skills are traditionally cultivated by chemists. Here we focus on metabolomics from the chemical standpoint and restrict ourselves to NMR. From the analytical point of view, NMR has pros and cons but does provide a peculiar holistic perspective that may speak for its future adoption as a population-wide health screening technique.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores/urina , Ensaios de Triagem em Larga Escala , Humanos , Biologia de Sistemas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA