Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 114098, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625793

RESUMO

Developing an effective mRNA therapeutic often requires maximizing protein output per delivered mRNA molecule. We previously found that coding sequence (CDS) design can substantially affect protein output, with mRNA variants containing more optimal codons and higher secondary structure yielding the highest protein outputs due to their slow rates of mRNA decay. Here, we demonstrate that CDS-dependent differences in translation initiation and elongation rates lead to differences in translation- and deadenylation-dependent mRNA decay rates, thus explaining the effect of CDS on mRNA half-life. Surprisingly, the most stable and highest-expressing mRNAs in our test set have modest initiation/elongation rates and ribosome loads, leading to minimal translation-dependent mRNA decay. These findings are of potential interest for optimization of protein output from therapeutic mRNAs, which may be achieved by attenuating rather than maximizing ribosome load.


Assuntos
Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro , Ribossomos , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA