Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(11): e1011795, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38011215

RESUMO

Zika virus (ZIKV) serine protease, indispensable for viral polyprotein processing and replication, is composed of the membrane-anchored NS2B polypeptide and the N-terminal domain of the NS3 polypeptide (NS3pro). The C-terminal domain of the NS3 polypeptide (NS3hel) is necessary for helicase activity and contains an ATP-binding site. We discovered that ZIKV NS2B-NS3pro binds single-stranded RNA with a Kd of ~0.3 µM, suggesting a novel function. We tested various structural modifications of NS2B-NS3pro and observed that constructs stabilized in the recently discovered "super-open" conformation do not bind RNA. Likewise, stabilizing NS2B-NS3pro in the "closed" (proteolytically active) conformation using substrate inhibitors abolished RNA binding. We posit that RNA binding occurs when ZIKV NS2B-NS3pro adopts the "open" conformation, which we modeled using highly homologous dengue NS2B-NS3pro crystallized in the open conformation. We identified two positively charged fork-like structures present only in the open conformation of NS3pro. These forks are conserved across Flaviviridae family and could be aligned with the positively charged grove on NS3hel, providing a contiguous binding surface for the negative RNA strand exiting helicase. We propose a "reverse inchworm" model for a tightly intertwined NS2B-NS3 helicase-protease machinery, which suggests that NS2B-NS3pro cycles between open and super-open conformations to bind and release RNA enabling long-range NS3hel processivity. The transition to the closed conformation, likely induced by the substrate, enables the classical protease activity of NS2B-NS3pro.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Proteínas não Estruturais Virais/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Peptídeos , RNA , Inibidores de Proteases
2.
Exp Cell Res ; 409(2): 112930, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800542

RESUMO

Plekha7 (Pleckstrin homology [PH] domain containing, family A member 7) regulates the assembly of proteins of the cytoplasmic apical zonula adherens junction (AJ), thus ensuring cell-cell adhesion and tight-junction barrier integrity. Little is known of Plekha7 function in cancer. In colorectal cancer (CRC) Plekha7 expression is elevated compared to adjacent normal tissue levels, increasing with clinical stage. Plekha7 was present at plasma membrane AJ with wild-type KRas (wt-KRas) but was dispersed in cells expressing mutant KRas (mut-KRas). Fluorescence lifetime imaging microscopy (FLIM) indicated a direct Plekha7 interaction with wt-KRas but scantily with mut-KRas. Inhibiting Plekha7 specifically decreased mut-KRas cell signaling, proliferation, attachment, migration, and retarded mut-KRAS CRC tumor growth. Binding of diC8-phosphoinositides (PI) to the PH domain of Plekha7 was relatively low affinity. This may be because a D175 amino acid residue plays a "sentry" role preventing PI(3,4)P2 and PI(3,4,5)P3 binding. Molecular or pharmacological inhibition of the Plekha7 PH domain prevented the growth of mut-KRas but not wt-KRas cells. Taken together the studies suggest that Plekha7, in addition to maintaining AJ structure plays a role in mut-KRas signaling and phenotype through interaction of its PH domain with membrane mut-KRas, but not wt-KRas, to increase the efficiency of mut-KRas downstream signaling.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Apoptose , Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Adesão Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Junções Intercelulares , Transdução de Sinais , Junções Íntimas , Células Tumorais Cultivadas
3.
Structure ; 29(9): 1029-1039.e3, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33878292

RESUMO

PLEKHA7 (pleckstrin homology domain containing family A member 7) plays key roles in intracellular signaling, cytoskeletal organization, and cell adhesion, and is associated with multiple human cancers. The interactions of its pleckstrin homology (PH) domain with membrane phosphatidyl-inositol-phosphate (PIP) lipids are critical for proper cellular localization and function, but little is known about how PLEKHA7 and other PH domains interact with membrane-embedded PIPs. Here we describe the structural basis for recognition of membrane-bound PIPs by PLEHA7. Using X-ray crystallography, nuclear magnetic resonance, molecular dynamics simulations, and isothermal titration calorimetry, we show that the interaction of PLEKHA7 with PIPs is multivalent, distinct from a discrete one-to-one interaction, and induces PIP clustering. Our findings reveal a central role of the membrane assembly in mediating protein-PIP association and provide a roadmap for understanding how the PH domain contributes to the signaling, adhesion, and nanoclustering functions of PLEKHA7.


Assuntos
Proteínas de Transporte/química , Sítios de Ligação , Proteínas de Transporte/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Ligação Proteica
4.
Subcell Biochem ; 96: 563-577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252744

RESUMO

Anthrax toxin is a major virulence factor of Bacillus anthracis, a Gram-positive bacterium which can form highly stable spores that are the causative agents of the disease, anthrax. While chiefly a disease of livestock, spores can be "weaponized" as a bio-terrorist agent, and can be deadly if not recognized and treated early with antibiotics. The intracellular pathways affected by the enzymes are broadly understood and are not discussed here. This chapter focuses on what is known about the assembly of secreted toxins on the host cell surface and how the toxin is delivered into the cytosol. The central component is the "Protective Antigen", which self-oligomerizes and forms complexes with its pay-load, either Lethal Factor or Edema Factor. It binds a host receptor, CMG2, or a close relative, triggering receptor-mediated endocytosis, and forms a remarkably elegant yet powerful machine that delivers toxic enzymes into the cytosol, powered only by the pH gradient across the membrane. We now have atomic structures of most of the starting, intermediate and final assemblies in the infectious process. Together with a major body of biophysical, mutational and biochemical work, these studies reveal a remarkable story of both how toxin assembly is choreographed in time and space.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Antraz/microbiologia , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/genética , Bacillus anthracis/química , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Humanos , Transporte Proteico
6.
Cancer Res ; 79(12): 3100-3111, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31040156

RESUMO

Cnk1 (connector enhancer of kinase suppressor of Ras 1) is a pleckstrin homology (PH) domain-containing scaffold protein that increases the efficiency of Ras signaling pathways, imparting efficiency and specificity to the response of cell proliferation, survival, and migration. Mutated KRAS (mut-KRAS) is the most common proto-oncogenic event, occurring in approximately 25% of human cancers and has no effective treatment. In this study, we show that selective inhibition of Cnk1 blocks growth and Raf/Mek/Erk, Rho and RalA/B signaling in mut-KRAS lung and colon cancer cells with little effect on wild-type (wt)-KRAS cells. Cnk1 inhibition decreased anchorage-independent mut-KRas cell growth more so than growth on plastic, without the partial "addiction" to mut-KRAS seen on plastic. The PH domain of Cnk1 bound with greater affinity to PtdIns(4,5)P2 than PtdIns(3,4,5)P3, and Cnk1 localized to areas of the plasma membranes rich in PtdIns, suggesting a role for the PH domain in the biological activity of Cnk1. Through molecular modeling and structural modification, we identified a compound PHT-7.3 that bound selectively to the PH domain of Cnk1, preventing plasma membrane colocalization with mut-KRas. PHT-7.3 inhibited mut-KRas, but not wild-type KRas cancer cell and tumor growth and signaling. Thus, the PH domain of Cnk1 is a druggable target whose inhibition selectively blocks mutant KRas activation, making Cnk1 an attractive therapeutic target in patients with mut-KRAS-driven cancer. SIGNIFICANCE: These findings identify a therapeutic strategy to selectively block oncogenic KRas activity through the PH domain of Cnk1, which reduces its cell membrane binding, decreasing the efficiency of Ras signaling and tumor growth.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Domínios de Homologia à Plecstrina , Células Tumorais Cultivadas
7.
Cancer Lett ; 449: 145-162, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771432

RESUMO

Inhibition of ubiquitin ligases with small molecule remains a very challenging task, given the lack of catalytic activity of the target and the requirement of disruption of its interactions with other proteins. Siah1/2, which are E3 ubiquitin ligases, are implicated in melanoma and prostate cancer and represent high-value drug targets. We utilized three independent screening approaches in our efforts to identify small-molecule Siah1/2 inhibitors: Affinity Selection-Mass Spectrometry, a protein thermal shift-based assay and an in silico based screen. Inhibitors were assessed for their effect on viability of melanoma and prostate cancer cultures, colony formation, prolyl-hydroxylase-HIF1α signaling, expression of selected Siah2-related transcripts, and Siah2 ubiquitin ligase activity. Several analogs were further characterized, demonstrating improved efficacy. Combination of the top hits identified in the different assays demonstrated an additive effect, pointing to complementing mechanisms that underlie each of these Siah1/2 inhibitors.


Assuntos
Melanoma/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Regulação para Baixo , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Espectrometria de Massas , Melanoma/genética , Camundongos , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitina-Proteína Ligases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
JCI Insight ; 2(23)2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212953

RESUMO

Primary and secondary hypertension are major risk factors for cardiovascular disease, the leading cause of death worldwide. Elevated secretion of aldosterone resulting from primary aldosteronism (PA) is a key driver of secondary hypertension. Here, we report an unexpected role for the ubiquitin ligase Siah1 in adrenal gland development and PA. Siah1a-/- mice exhibit altered adrenal gland morphology, as reflected by a diminished X-zone, enlarged medulla, and dysregulated zonation of the glomerulosa as well as increased aldosterone levels and aldosterone target gene expression and reduced plasma potassium levels. Genes involved in catecholamine biosynthesis and cAMP signaling are upregulated in the adrenal glands of Siah1a-/- mice, while genes related to retinoic acid signaling and cholesterol biosynthesis are downregulated. Loss of Siah1 leads to increased expression of the Siah1 substrate PIAS1, an E3 SUMO protein ligase implicated in the suppression of LXR, a key regulator of cholesterol levels in the adrenal gland. In addition, SIAH1 sequence variants were identified in patients with PA; such variants impaired SIAH1 ubiquitin ligase activity, resulting in elevated PIAS1 expression. These data identify a role for the Siah1-PIAS1 axis in adrenal gland organization and function and point to possible therapeutic targets for hyperaldosteronism.


Assuntos
Glândulas Suprarrenais/metabolismo , Aldosterona/metabolismo , Proteínas/fisiologia , Glândulas Suprarrenais/patologia , Medula Suprarrenal/patologia , Adulto , Animais , Colesterol/biossíntese , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Rim/metabolismo , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Potássio/sangue , Proteínas Inibidoras de STAT Ativados/biossíntese , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas/genética , Transdução de Sinais/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Tretinoína/fisiologia , Ubiquitina-Proteína Ligases/genética , Zona Glomerulosa/metabolismo , Zona Glomerulosa/patologia
9.
Nat Commun ; 8: 16066, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714476

RESUMO

Retinoid X receptor-alpha (RXRα) binds to DNA either as homodimers or heterodimers, but it also forms homotetramers whose function is poorly defined. We previously discovered that an N-terminally-cleaved form of RXRα (tRXRα), produced in tumour cells, activates phosphoinositide 3-kinase (PI3K) signalling by binding to the p85α subunit of PI3K and that K-80003, an anti-cancer agent, inhibits this process. Here, we report through crystallographic and biochemical studies that K-80003 binds to and stabilizes tRXRα tetramers via a 'three-pronged' combination of canonical and non-canonical mechanisms. K-80003 binding has no effect on tetramerization of RXRα, owing to the head-tail interaction that is absent in tRXRα. We also identify an LxxLL motif in p85α, which binds to the coactivator-binding groove on tRXRα and dissociates from tRXRα upon tRXRα tetramerization. These results identify conformational selection as the mechanism for inhibiting the nongenomic action of tRXRα and provide molecular insights into the development of RXRα cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Receptor X Retinoide alfa/antagonistas & inibidores , Sulindaco/análogos & derivados , Células A549 , Animais , Classe Ia de Fosfatidilinositol 3-Quinase , Cristalografia por Raios X , Células HEK293 , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Receptor X Retinoide alfa/metabolismo , Transdução de Sinais , Sulindaco/farmacologia
10.
Nat Chem Biol ; 13(6): 624-632, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28346406

RESUMO

Obesity-associated insulin resistance plays a central role in type 2 diabetes. As such, tyrosine phosphatases that dephosphorylate the insulin receptor (IR) are potential therapeutic targets. The low-molecular-weight protein tyrosine phosphatase (LMPTP) is a proposed IR phosphatase, yet its role in insulin signaling in vivo has not been defined. Here we show that global and liver-specific LMPTP deletion protects mice from high-fat diet-induced diabetes without affecting body weight. To examine the role of the catalytic activity of LMPTP, we developed a small-molecule inhibitor with a novel uncompetitive mechanism, a unique binding site at the opening of the catalytic pocket, and an exquisite selectivity over other phosphatases. This inhibitor is orally bioavailable, and it increases liver IR phosphorylation in vivo and reverses high-fat diet-induced diabetes. Our findings suggest that LMPTP is a key promoter of insulin resistance and that LMPTP inhibitors would be beneficial for treating type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/genética , Bibliotecas de Moléculas Pequenas , Animais , Sítios de Ligação , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Concentração Inibidora 50 , Camundongos , Camundongos Knockout , Camundongos Obesos , Modelos Biológicos , Estrutura Molecular , Peso Molecular , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
11.
Cancer Res ; 76(14): 4259-4269, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27261507

RESUMO

The hypoxia-inducible transcription factor HIF1α drives expression of many glycolytic enzymes. Here, we show that hypoxic glycolysis, in turn, increases HIF1α transcriptional activity and stimulates tumor growth, revealing a novel feed-forward mechanism of glycolysis-HIF1α signaling. Negative regulation of HIF1α by AMPK1 is bypassed in hypoxic cells, due to ATP elevation by increased glycolysis, thereby preventing phosphorylation and inactivation of the HIF1α transcriptional coactivator p300. Notably, of the HIF1α-activated glycolytic enzymes we evaluated by gene silencing, aldolase A (ALDOA) blockade produced the most robust decrease in glycolysis, HIF-1 activity, and cancer cell proliferation. Furthermore, either RNAi-mediated silencing of ALDOA or systemic treatment with a specific small-molecule inhibitor of aldolase A was sufficient to increase overall survival in a xenograft model of metastatic breast cancer. In establishing a novel glycolysis-HIF-1α feed-forward mechanism in hypoxic tumor cells, our results also provide a preclinical rationale to develop aldolase A inhibitors as a generalized strategy to treat intractable hypoxic cancer cells found widely in most solid tumors. Cancer Res; 76(14); 4259-69. ©2016 AACR.


Assuntos
Frutose-Bifosfato Aldolase/antagonistas & inibidores , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Neoplasias/tratamento farmacológico , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Hipóxia Celular , Linhagem Celular Tumoral , Proteína p300 Associada a E1A/fisiologia , Humanos , Camundongos , Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Protein Expr Purif ; 121: 118-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26826315

RESUMO

A method is reported to purify Fibulin-1 from human plasma resulting in a 36% recovery. The steps involve removal of the cryoglobulin and the vitamin K dependent proteins followed by polyethylene glycol and ammonium sulfate precipitations, DEAE-Sephadex column chromatography and finally Factor H-Sepharose affinity purification. The procedure is designed to be integrated into an overall scheme for the isolation of over 30 plasma proteins from a single batch of human plasma. Results from mass spectroscopy, SDS-PAGE, and Western blotting indicate that human plasma Fibulin-1 is a single chain of the largest isotype. Functional binding assays demonstrated calcium ion dependent interaction of Fibulin-1 for fibrinogen, fibronectin, and Factor H. The procedure described is the first to our knowledge that enables a large scale purification of Fibulin-1 from human plasma.


Assuntos
Proteínas de Ligação ao Cálcio/sangue , Cromatografia de Afinidade , Fator H do Complemento/química , Espectrometria de Massas , Sulfato de Amônio/química , Proteínas de Ligação ao Cálcio/química , Fibrinogênio/química , Fibronectinas/química , Humanos , Sefarose/química
13.
Methods Mol Biol ; 1278: 3-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859940

RESUMO

Regulated interactions between proteins govern signaling pathways within and between cells. Structural studies on protein complexes formed reversibly and/or transiently illustrate the remarkable diversity of interactions, both in terms of interfacial size and nature. In recent years, "domain-peptide" interactions have gained much greater recognition and may be viewed as both pre-translational and posttranslational-dependent functional switches. Our understanding of the multistep regulation of auto-inhibited multidomain proteins has also grown. Their activity may be understood as the "combinatorial" output of multiple input signals, including phosphorylation, location, and mechanical force. The prospects for bridging the gap between the new "systems biology" data and the traditional "reductionist" data are also discussed.


Assuntos
Biologia Molecular/métodos , Mapas de Interação de Proteínas , Proteínas/química , Biologia de Sistemas , Regulação Alostérica , Cristalografia por Raios X , Estrutura Terciária de Proteína , Proteínas/metabolismo , Transdução de Sinais
14.
J Neurosci ; 34(45): 15123-31, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25378175

RESUMO

Emerging evidence suggests that oxidative/nitrosative stress, as occurs during aging, contributes to the pathogenesis of Parkinson's disease (PD). In contrast, detoxification of reactive oxygen species and reactive nitrogen species can protect neurons. DJ-1 has been identified as one of several recessively inherited genes whose mutation can cause familial PD, and inactivation of DJ-1 renders neurons more susceptible to oxidative stress and cell death. DJ-1 is also known to regulate the activity of the phosphatase and tensin homolog (PTEN), which plays a critical role in neuronal cell death in response to various insults. However, mechanistic details delineating how DJ-1 regulates PTEN activity remain unknown. Here, we report that PTEN phosphatase activity is inhibited via a transnitrosylation reaction [i.e., transfer of a nitric oxide (NO) group from the cysteine residue of one protein to another]. Specifically, we show that DJ-1 is S-nitrosylated (forming SNO-DJ-1); subsequently, the NO group is transferred from DJ-1 to PTEN by transnitrosylation. Moreover, we detect SNO-PTEN in human brains with sporadic PD. Using x-ray crystallography and site-directed mutagenesis, we find that Cys106 is the site of S-nitrosylation on DJ-1 and that mutation of this site inhibits transnitrosylation to PTEN. Importantly, S-nitrosylation of PTEN decreases its phosphatase activity, thus promoting cell survival. These findings provide mechanistic insight into the neuroprotective role of SNO-DJ-1 by elucidating how DJ-1 detoxifies NO via transnitrosylation to PTEN. Dysfunctional DJ-1, which lacks this transnitrosylation activity due to mutation or prior oxidation (e.g., sulfonation) of the critical cysteine thiol, could thus contribute to neurodegenerative disorders like PD.


Assuntos
Apoptose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Proteínas Oncogênicas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Motivos de Aminoácidos , Sequência de Aminoácidos , Estudos de Casos e Controles , Feminino , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Dados de Sequência Molecular , Mutação , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Proteína Desglicase DJ-1
15.
J Virol ; 88(23): 13769-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25231316

RESUMO

UNLABELLED: The receptor binding domain (RBD) of the spike (S) glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) is a major target of protective immunity in vivo. Although a large number of neutralizing antibodies (nAbs) have been developed, it remains unclear if a single RBD-targeting nAb or two in combination can prevent neutralization escape and, if not, attenuate viral virulence in vivo. In this study, we used a large panel of human nAbs against an epitope that overlaps the interface between the RBD and its receptor, angiotensin-converting enzyme 2 (ACE2), to assess their cross-neutralization activities against a panel of human and zoonotic SARS-CoVs and neutralization escape mutants. We also investigated the neutralization escape profiles of these nAbs and evaluated their effects on receptor binding and virus fitness in vitro and in mice. We found that some nAbs had great potency and breadth in neutralizing multiple viral strains, including neutralization escape viruses derived from other nAbs; however, no single nAb or combination of two blocked neutralization escape. Interestingly, in mice the neutralization escape mutant viruses showed either attenuation (Urbani background) or increased virulence (GD03 background) consistent with the different binding affinities between their RBDs and the mouse ACE2. We conclude that using either single nAbs or dual nAb combinations to target a SARS-CoV RBD epitope that shows plasticity may have limitations for preventing neutralization escape during in vivo immunotherapy. However, RBD-directed nAbs may be useful for providing broad neutralization and prevention of escape variants when combined with other nAbs that target a second conserved epitope with less plasticity and more structural constraint. IMPORTANCE: The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 has resulted in severe human respiratory disease with high death rates. Their zoonotic origins highlight the likelihood of reemergence or further evolution into novel human coronavirus pathogens. Broadly neutralizing antibodies (nAbs) that prevent infection of related viruses represent an important immunostrategy for combating coronavirus infections; however, for this strategy to succeed, it is essential to uncover nAb-mediated escape pathways and to pioneer strategies that prevent escape. Here, we used SARS-CoV as a research model and examined the escape pathways of broad nAbs that target the receptor binding domain (RBD) of the virus. We found that neither single nAbs nor two nAbs in combination blocked escape. Our results suggest that targeting conserved regions with less plasticity and more structural constraint rather than the SARS-CoV RBD-like region(s) should have broader utility for antibody-based immunotherapy.


Assuntos
Anticorpos Antivirais/imunologia , Testes de Neutralização , Peptidil Dipeptidase A/metabolismo , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Feminino , Humanos , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Virulência
16.
Adv Exp Med Biol ; 819: 111-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25023171

RESUMO

Structural studies on integrins have recently made great strides in recent years. Crystal structures of the complete extracellular fragments of three integrins in open and closed conformations, 6 α-I domains in complex with ligands, and at least 20 intracellular proteins in complex with cytosolic tails have been obtained; and several transmembrane and cytosolic complexes have been determined by NMR. High resolution EM studies complement these atomic resolution techniques by studying the integrin in different activation states. Although we still have only a few experimental examples among integrin family members, the high level of sequence homology between integrins means that reliable models can be built for the other members of the integrin family. These structures make sense of a lot of preceding biochemical, biophysical and mutagenesis studies, and generate many new testable hypotheses of integrin function. This chapter emphasizes new structural insights applicable to all integrins, with an emphasis on those integrins that contain an α-I domain. The structural data reinforce the notion of the integrin as a molecule in dynamic equilibrium at the cell surface, regulated by binding both to extracellular and intracellular ligands.


Assuntos
Integrinas/química , Sequência de Aminoácidos , Animais , Colágeno/metabolismo , Humanos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína
17.
PLoS Pathog ; 10(5): e1004103, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24788925

RESUMO

Recent studies have shown high usage of the IGHV1-69 germline immunoglobulin gene for influenza hemagglutinin stem-directed broadly-neutralizing antibodies (HV1-69-sBnAbs). Here we show that a major structural solution for these HV1-69-sBnAbs is achieved through a critical triad comprising two CDR-H2 loop anchor residues (a hydrophobic residue at position 53 (Ile or Met) and Phe54), and CDR-H3-Tyr at positions 98±1; together with distinctive V-segment CDR amino acid substitutions that occur in positions sparse in AID/polymerase-η recognition motifs. A semi-synthetic IGHV1-69 phage-display library screen designed to investigate AID/polη restrictions resulted in the isolation of HV1-69-sBnAbs that featured a distinctive Ile52Ser mutation in the CDR-H2 loop, a universal CDR-H3 Tyr at position 98 or 99, and required as little as two additional substitutions for heterosubtypic neutralizing activity. The functional importance of the Ile52Ser mutation was confirmed by mutagenesis and by BCR studies. Structural modeling suggests that substitution of a small amino acid at position 52 (or 52a) facilitates the insertion of CDR-H2 Phe54 and CDR-H3-Tyr into adjacent pockets on the stem. These results support the concept that activation and expansion of a defined subset of IGHV1-69-encoded B cells to produce potent HV1-69-sBnAbs does not necessarily require a heavily diversified V-segment acquired through recycling/reentry into the germinal center; rather, the incorporation of distinctive amino acid substitutions by Phase 2 long-patch error-prone repair of AID-induced mutations or by random non-AID SHM events may be sufficient. We propose that these routes of B cell maturation should be further investigated and exploited as a pathway for HV1-69-sBnAb elicitation by vaccination.


Assuntos
Anticorpos Neutralizantes/metabolismo , Mapeamento de Epitopos , Hemaglutinação por Vírus/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/imunologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Hemaglutinação por Vírus/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Vacinas contra Influenza/química , Vacinas contra Influenza/genética , Vacinas contra Influenza/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Terapia de Alvo Molecular , Engenharia de Proteínas/métodos , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos
18.
Chem Biol ; 21(5): 596-607, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24704507

RESUMO

Retinoid X receptor-alpha (RXRα), an intriguing and unique drug target, can serve as an intracellular target mediating the anticancer effects of certain nonsteroidal anti-inflammatory drugs (NSAIDs), including sulindac. We report the synthesis and characterization of two sulindac analogs, K-8008 and K-8012, which exert improved anticancer activities over sulindac in a RXRα-dependent manner. The analogs inhibit the interaction of the N-terminally truncated RXRα (tRXRα) with the p85α subunit of PI3K, leading to suppression of AKT activation and induction of apoptosis. Crystal structures of the RXRα ligand-binding domain (LBD) with K-8008 or K-8012 reveal that both compounds bind to tetrameric RXRα LBD at a site different from the classical ligand-binding pocket. Thus, these results identify K-8008 and K-8012 as tRXRα modulators and define a binding mechanism for regulating the nongenomic action of tRXRα.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Receptor X Retinoide alfa/antagonistas & inibidores , Receptor X Retinoide alfa/química , Sulindaco/análogos & derivados , Sulindaco/farmacologia , Animais , Antineoplásicos/síntese química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Receptor X Retinoide alfa/metabolismo , Relação Estrutura-Atividade , Sulindaco/química , Células Tumorais Cultivadas
19.
FEBS J ; 281(11): 2487-502, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24698179

RESUMO

Bacteroides fragilis causes the majority of anaerobic infections in humans. The presence of a pathogenicity island in the genome discriminates pathogenic and commensal B. fragilis strains. The island encodes metalloproteinase II (MPII), a potential virulence protein, and one of three homologous fragilysin isozymes (FRA; also termed B. fragilis toxin or BFT). Here, we report biochemical data on the structural-functional characteristics of the B. fragilis pathogenicity island proteases by reporting the crystal structure of MPII at 2.13 Å resolution, combined with detailed characterization of the cleavage preferences of MPII and FRA3 (as a representative of the FRA isoforms), identified using a high-throughput peptide cleavage assay with 18 583 substrate peptides. We suggest that the evolution of the MPII catalytic domain can be traced to human and archaebacterial proteinases, whereas the prodomain fold is a feature specific to MPII and FRA. We conclude that the catalytic domain of both MPII and FRA3 evolved differently relative to the prodomain, and that the prodomain evolved specifically to fit the B. fragilis pathogenicity. Overall, our data provide insights into the evolution of cleavage specificity and activation mechanisms in the virulent metalloproteinases.


Assuntos
Bacteroides fragilis/enzimologia , Ilhas Genômicas/genética , Metaloproteases/genética , Bacteroides fragilis/genética , Metaloproteases/química
20.
Chem Biol ; 20(8): 973-82, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23891150

RESUMO

The E3 ubiquitin ligase Siah regulates key cellular events that are central to cancer development and progression. A promising route to Siah inhibition is disrupting its interactions with adaptor proteins. However, typical of protein-protein interactions, traditional unbiased approaches to ligand discovery did not produce viable hits against this target, despite considerable effort and a multitude of approaches. Ultimately, a rational structure-based design strategy was successful for the identification of Siah inhibitors in which peptide binding drives specific covalent bond formation with the target. X-ray crystallography, mass spectrometry, and functional data demonstrate that these peptide mimetics are efficient covalent inhibitors of Siah and antagonize Siah-dependent regulation of Erk and Hif signaling in the cell. The proposed strategy may result useful as a general approach to the design of peptide-based inhibitors of other protein-protein interactions.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Proteínas Nucleares/antagonistas & inibidores , Peptídeos/química , Peptidomiméticos/química , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Peptídeos/farmacologia , Peptidomiméticos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA