Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834533

RESUMO

Understanding how animals maximize reproductive success in variable environments is important in determining how populations will respond to increasingly extreme weather events predicted in the face of changing climates. Although temperature is generally considered a key factor in reproductive decisions, rainfall is also an important predictor of prey availability in arid environments. Here, we test the impact of weather (i.e., rainfall and temperature) on female reproductive investment in an arid-dwelling bird (i.e., clutch size and egg volume) and tradeoffs between the two. We predicted that female chestnut-crowned babblers (Pomatostomus ruficeps), endemic to the arid region of Australia, would increase clutch size at the expense of egg volume in response to variation in rainfall and temperature. We found that over 14 breeding seasons, clutch size decreased with increasing temperature, but increased following more rain. Egg volume, on the other hand, became larger as temperatures increased and, although not related to the amount of rain, was related to the number of days since the last rainfall. Finally, egg size decreased as clutch size increased, indicating a tradeoff between the two reproductive parameters. Our results suggest that chestnut-crowned babblers breed reactively in response to variable environments. We expect that clutch size variation in response to rain may reflect the impact of rain on arthropod abundance, whereas the effect of temperature may represent an established decline in clutch size observed in other seasonal breeders. As the tradeoff between clutch size and egg volume was modest, and clutch sizes were modified to a greater extent than egg volumes in response to rainfall, we suggest selection is more likely to increase offspring number than quality, at least in favorable years. Our results support the idea that reproductive investment is variable in fluctuating environments, which has implications for species living in habitats experiencing more extreme and less predictable weather as the global climate changes.

2.
PLoS One ; 19(3): e0298736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507318

RESUMO

Despite a move toward gender parity in the United States (U.S.) workforce, a large gender gap persists in the fields of science, technology, engineering, and mathematics (STEM); this is particularly true for academic (i.e., instructor and tenure track) STEM positions. This gap increases as women advance through the traditional steps of academia, with the highest degree of gender disparity in tenured positions. As policies, politics, and culture, which all contribute to gender equity across the world, vary across regions in the United States, we expect that the gender gap in STEM might also vary across geographic regions. Here, we evaluated over 20,000 instructor and tenure track positions in university STEM departments across the U.S. to evaluate whether and how the geographic region of a university might determine its proportion of women in STEM academic positions. Similar to previous research, regardless of geographic region, more men were employed in both tenure track and instructor positions across STEM fields. However, variation existed regionally within the U.S., with the Mountain region employing the lowest proportion of women in tenure track positions and the East North Central and Pacific regions employing the greatest proportion. We expect this regional variation could be caused by differences in state and local policies, regional representation, and mentorship, resulting in inconsistent support for women, leading to differences in work environments, hiring, and job retention rates across the country. A better understanding of which geographic areas within the U.S. have more equal distributions of women in the STEM field will help us to identify the specific mechanisms that facilitate more equal and inclusive opportunities for women and other underrepresented groups across all levels of STEM academia.


Assuntos
Pessoal de Educação , Engenharia , Masculino , Humanos , Estados Unidos , Feminino , Tecnologia , Docentes de Medicina , Organizações
3.
Gastroenterology ; 164(3): 392-406.e5, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36402190

RESUMO

BACKGROUND & AIMS: Advanced colorectal carcinoma (CRC) is characterized by a high frequency of primary immune evasion and refractoriness to immunotherapy. Given the importance of interferon (IFN)-γ in CRC immunosurveillance, we investigated whether and how acquired IFN-γ resistance in tumor cells would promote tumor growth, and whether IFN-γ sensitivity could be restored. METHODS: Spontaneous and colitis-associated CRC development was induced in mice with a specific IFN-γ pathway inhibition in intestinal epithelial cells. The influence of IFN-γ pathway gene status and expression on survival was assessed in patients with CRC. The mechanisms underlying IFN-γ resistance were investigated in CRC cell lines. RESULTS: The conditional knockout of the IFN-γ receptor in intestinal epithelial cells enhanced spontaneous and colitis-associated colon tumorigenesis in mice, and the loss of IFN-γ receptor α (IFNγRα) expression by tumor cells predicted poor prognosis in patients with CRC. IFNγRα expression was repressed in human CRC cells through changes in N-glycosylation, which decreased protein stability via proteasome-dependent degradation, inhibiting IFNγR-signaling. Downregulation of the bisecting N-acetylglucosaminyltransferase III (MGAT3) expression was associated with IFN-γ resistance in all IFN-γ-resistant cells, and highly correlated with low IFNγRα expression in CRC tissues. Both ectopic and pharmacological reconstitution of MGAT3 expression with all-trans retinoic acid increased bisecting N-glycosylation, as well as IFNγRα protein stability and signaling. CONCLUSIONS: Together, our results demonstrated that tumor-associated changes in N-glycosylation destabilize IFNγRα, causing IFN-γ resistance in CRC. IFN-γ sensitivity could be reestablished through the increase in MGAT3 expression, notably via all-trans retinoic acid treatment, providing new prospects for the treatment of immune-resistant CRC.


Assuntos
Colite , Neoplasias Colorretais , Humanos , Camundongos , Animais , Glicosilação , Neoplasias Colorretais/patologia , Interferon gama , Imunoterapia , Colite/patologia , Tretinoína
4.
Am Nat ; 200(5): 662-674, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36260844

RESUMO

AbstractDuring range expansions, organisms can use epigenetic mechanisms to adjust to conditions in novel areas by altering gene expression and enabling phenotypic plasticity. Here, we predicted that the number of CpG sites within the genome, one form of epigenetic potential, would be important for successful range expansions because DNA methylation can modulate gene expression and, consequently, plasticity. We asked how the number of CpG sites and DNA methylation varied across five locations in the ∼70-year-old Kenyan house sparrow (Passer domesticus) range expansion. We found that the number of CpG sites was highest toward the vanguard of the invasion and decreased toward the range core. Analysis suggests that this pattern may have been driven by selection, favoring birds with more CpG sites at the range edge. However, we cannot rule out other processes, including nonrandom gene flow. Additionally, DNA methylation did not change across the range expansion, nor was it more variable. We hypothesize that as new areas are colonized, epigenetic potential may be selectively advantageous early but eventually be replaced by less plastic and perhaps genetically canalized traits as populations adapt to local conditions. Although further work is needed on epigenetic potential, this form (CpG number) appears to be a promising mechanism to investigate as a driver of expansions via capacitated phenotypic plasticity in other natural and anthropogenic range expansions.


Assuntos
Pardais , Animais , Pardais/genética , Metilação de DNA , Quênia , Epigênese Genética , Plásticos
5.
Epigenomes ; 6(4)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36278679

RESUMO

DNA methylation is an epigenetic modification with wide-ranging consequences across the life of an organism. This modification can be stable, persisting through development despite changing environmental conditions. However, in other contexts, DNA methylation can also be flexible, underlying organismal phenotypic plasticity. One underappreciated aspect of DNA methylation is that it is a potent mutagen; methylated cytosines mutate at a much faster rate than other genetic motifs. This mutagenic property of DNA methylation has been largely ignored in eco-evolutionary literature, despite its prevalence. Here, we explore how DNA methylation induced by environmental and other factors could promote mutation and lead to evolutionary change at a more rapid rate and in a more directed manner than through stochastic genetic mutations alone. We argue for future research on the evolutionary implications of DNA methylation driven mutations both within the lifetime of organisms, as well as across timescales.

6.
J Exp Biol ; 225(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35514228

RESUMO

To counterbalance demands of different selective pressures, many species possess morphological, physiological and behavioral specializations that increase survival in their environments. Predation is one such pressure that can elicit multiple adaptive responses, and the effectiveness of antipredator behaviors likely vary both by environment and individual across time. Chameleons use multiple antipredator strategies, many of which vary with body size and habitat type. Although their unique morphological and physiological traits produce relatively slow locomotion, which is poorly suited for fleeing, chameleons can also use crypsis or aggression to avoid predation. To examine the functional basis for variable antipredator behavioral responses, we subjected chameleons to a series of mock predation trials and determined how often individuals adopted each antipredator strategy, and then quantified the performance capacities underlying each strategy. In particular, we measured bite force as a determinant for aggression, sprint velocity for fleeing, and degree of color change for crypsis. We found that aggression was predicted by traits associated with higher absolute and relative bite force, as well as habitat type; fleeing was predicted by higher normalized sprint velocity and habitat type; and crypsis was predicted by habitat type, color change capacity in bird color space and the interaction between the two. These results illustrate the importance of considering both functional capacity and environmental context in antipredator behavior decision-making.


Assuntos
Lagartos , Animais , Força de Mordida , Tamanho Corporal , Ecossistema , Humanos , Lagartos/fisiologia , Comportamento Predatório/fisiologia
7.
J Comp Physiol B ; 192(3-4): 489-499, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35596083

RESUMO

Muscles facilitate most animal behavior, from eating to fleeing. However, to generate the variation in behavior necessary for survival, different muscles must perform differently; for instance, sprinting requires multiple rapid muscle contractions, whereas biting may require fewer contractions but greater force. Here, we use a transcriptomic approach to identify genes associated with variation in muscle contractile physiology among different muscles from the same individual. We measured differential gene expression between a leg and jaw muscle of Anolis lizards known to differ in muscle contractile physiology and performance. For each individual, one muscle was used to measure muscle contractile physiology, including contractile velocity (Vmax and V40), specific tension, power ratio, and twitch time, whereas the contralateral muscle was used to extract RNA for transcriptomic sequencing. Using the transcriptomic data, we found clear clustering of muscle type. Expression of genes clustered in gene ontology (GO) terms related to muscle contraction and extracellular matrix was, on average, negatively correlated with Vmax and slower twitch times but positively correlated to power ratio and V40. Conversely, genes related to the GO terms related to aerobic respiration were downregulated in muscles with higher power ratio and V40, and over-expressed as twitch time decreased. Determining the molecular mechanisms that underlie variation in muscle contractile physiology can begin to explain how organisms are able to optimize behavior under variable conditions. Future studies pursuing the effects of differential gene expression across muscle types in different environments might inform researchers about how differences develop across species, populations, and individuals varying in ecological history.


Assuntos
Lagartos , Animais , Expressão Gênica , Lagartos/genética , Contração Muscular , Músculo Esquelético/fisiologia , Músculos/fisiologia
8.
PLoS One ; 16(6): e0252227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086730

RESUMO

Individuals may delay dispersing from their natal habitat, even after maturation to adulthood. Such delays can have broad consequences from determining population structure to allowing an individual to gain indirect fitness by helping parents rear future offspring. Dispersal in species that use delayed dispersal is largely thought to be opportunistic; however, how individuals, particularly inexperienced juveniles, assess their environments to determine the appropriate time to disperse is unknown. One relatively unexplored possibility is that dispersal decisions are the result of epigenetic mechanisms interacting between a genome and environment during development to generate variable dispersive phenotypes. Here, we tested this using epiRADseq to compare genome-wide levels of DNA methylation of blood in cooperatively breeding chestnut-crowned babblers (Pomatostomus ruficeps). We measured dispersive and philopatric individuals at hatching, before fledging, and at 1 year (following when first year dispersal decisions would be made). We found that individuals that dispersed in their first year had a reduced proportion of methylated loci than philopatric individuals before fledging, but not at hatching or as adults. Further, individuals that dispersed in the first year had a greater number of loci change methylation state (i.e. gain or lose) between hatching and fledging. The existence and timing of these changes indicate some influence of development on epigenetic changes that may influence dispersal behavior. However, further work needs to be done to address exactly how developmental environments may be associated with dispersal decisions and which loci in particular are manipulated to generate such changes.


Assuntos
Metilação de DNA/genética , Passeriformes/genética , Aves Canoras/genética , Migração Animal/fisiologia , Animais , Cruzamento/métodos , Ecossistema , Feminino , Masculino , Dinâmica Populacional , Reprodução/genética
9.
J Evol Biol ; 34(3): 465-476, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33325597

RESUMO

Phenotypic plasticity is hypothesized to facilitate adaptive responses to challenging conditions, such as those resulting from climate change. However, tests of the key predictions of this 'rescue hypothesis', that variation in plasticity exists and can evolve to buffer unfavourable conditions, remain rare. Here, we investigate among-female variation in temperature-mediated plasticity of incubation schedules and consequences for egg temperatures using the chestnut-crowned babbler (Pomatostomus ruficeps) from temperate regions of inland south-eastern Australia. Given recent phenological advances in this seasonal breeder and thermal requirements of developing embryos (>~25°C, optimally ~38°C), support for evolutionary rescue-perhaps paradoxically-requires that plasticity serves to buffer embryos more from sub-optimally low temperatures. We found significant variation in the duration of incubation bouts (mean ± SD = 27 ± 22 min) and foraging bouts (mean ± SD = 17 ± 11 min) in this maternal-only incubator. However, variation in each arose because of variation in the extent to which mothers increased on- and off-bout durations when temperatures (0-36°C) were more favourable rather than unfavourable as required under rescue. In addition, there was a strong positive intercept-slope correlation in on-bout durations, indicating that those with stronger plastic responses incubated more at average temperatures (~19°C). Combined, these effects reduced the functional significance of plastic responses: an individual's plasticity was neither associated with daily contributions to incubation (i.e. attentiveness) nor average egg temperatures. Our results highlight that despite significant among-individual variation in environmental-sensitivity, plasticity in parental care traits need not evolve to facilitate buffering against unfavourable conditions.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Mudança Climática , Comportamento de Nidação , Aves Canoras/genética , Animais , Desenvolvimento Embrionário , Feminino , Aves Canoras/embriologia
11.
Ecol Evol ; 8(1): 696-705, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321906

RESUMO

Projecting population responses to climate change requires an understanding of climatic impacts on key components of reproduction. Here, we investigate the associations among breeding phenology, climate and incubation schedules in the chestnut-crowned babbler (Pomatostomus ruficeps), a 50 g passerine with female-only, intermittent incubation that typically breeds from late winter (July) to early summer (November). During daylight hours, breeding females spent an average of 33 min on the nest incubating (hereafter on-bouts) followed by 24-min foraging (hereafter off-bouts), leading to an average daytime nest attentiveness of 60%. Nest attentiveness was 25% shorter than expected from allometric calculations, largely because off-bout durations were double the expected value for a species with 16 g clutches (4 eggs × 4 g/egg). On-bout durations and daily attentiveness were both negatively related to ambient temperature, presumably because increasing temperatures allowed more time to be allocated to foraging with reduced detriment to egg cooling. By contrast, on-bout durations were positively associated with wind speed, in this case because increasing wind speed exacerbated egg cooling during off-bouts. Despite an average temperature change of 12°C across the breeding season, breeding phenology had no effect on incubation schedules. This surprising result arose because of a positive relationship between temperature and wind speed across the breeding season: Any benefit of increasing temperatures was canceled by apparently detrimental consequences of increasing wind speed on egg cooling. Our results indicate that a greater appreciation for the associations among climatic variables and their independent effects on reproductive investment are necessary to understand the effects of changing climates on breeding phenology.

12.
Ann Rheum Dis ; 76(1): 244-251, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27113414

RESUMO

OBJECTIVES: TWIST1 is a member of the class B of basic helix-loop-helix transcription factors that regulates cell lineage determination and differentiation and has been implicated in epithelial-to-mesenchymal transition. Here, we aimed to investigate the role of TWIST1 for the activation of resident fibroblasts in systemic sclerosis (SSc). METHODS: The expression of Twist1 in fibroblasts was modulated by forced overexpression or siRNA-mediated knockdown. Interaction of Twist1, E12 and inhibitor Of differentiation (Id) was analysed by co-immunoprecipitation. The role of Twist1 in vivo was evaluated using inducible, conditional knockout mice with either ubiquitous or fibroblast-specific depletion of Twist1. Mice were either challenged with bleomycin or overexpressing a constitutively active transforming growth factor (TGF)ß receptor I. RESULT: The expression of TWIST1 was increased in fibroblasts in fibrotic human and murine skin in a TGFß/SMAD3-dependent manner. TWIST1 in turn enhanced TGFß-induced fibroblast activation in a p38-dependent manner. The stimulatory effects of TWIST1 on resident fibroblasts were mediated by TWIST1 homodimers. TGFß promotes the formation of TWIST1 homodimers by upregulation of TWIST1 and by induction of inhibitor of DNA-binding proteins, which have high affinity for E12/E47 and compete against TWIST1 for E12/E47 binding. Mice with selective depletion of Twist1 in fibroblasts are protected from experimental skin fibrosis in different murine models to a comparable degree as mice with ubiquitous depletion of Twist1. CONCLUSIONS: Our data identify TWIST1 as a central pro-fibrotic factor in SSc, which facilitates fibroblast activation by amplifying TGFß signalling. Targeting of TWIST1 may thus be a novel approach to normalise aberrant TGFß signalling in SSc.


Assuntos
Fibroblastos/metabolismo , Proteínas Nucleares/fisiologia , Escleroderma Sistêmico/metabolismo , Proteína 1 Relacionada a Twist/fisiologia , Animais , Estudos de Casos e Controles , Feminino , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Knockout , Proteínas Nucleares/biossíntese , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Multimerização Proteica/fisiologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Escleroderma Sistêmico/patologia , Transdução de Sinais/fisiologia , Pele/patologia , Fator de Crescimento Transformador beta/farmacologia , Proteína 1 Relacionada a Twist/biossíntese , Proteína 1 Relacionada a Twist/deficiência , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
13.
J Clin Invest ; 126(11): 4187-4204, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27721236

RESUMO

Different tumor microenvironments (TMEs) induce stromal cell plasticity that affects tumorigenesis. The impact of TME-dependent heterogeneity of tumor endothelial cells (TECs) on tumorigenesis is unclear. Here, we isolated pure TECs from human colorectal carcinomas (CRCs) that exhibited TMEs with either improved (Th1-TME CRCs) or worse clinical prognosis (control-TME CRCs). Transcriptome analyses identified markedly different gene clusters that reflected the tumorigenic and angiogenic activities of the respective TMEs. The gene encoding the matricellular protein SPARCL1 was most strongly upregulated in Th1-TME TECs. It was also highly expressed in ECs in healthy colon tissues and Th1-TME CRCs but low in control-TME CRCs. In vitro, SPARCL1 expression was induced in confluent, quiescent ECs and functionally contributed to EC quiescence by inhibiting proliferation, migration, and sprouting, whereas siRNA-mediated knockdown increased sprouting. In human CRC tissues and mouse models, vessels with SPARCL1 expression were larger and more densely covered by mural cells. SPARCL1 secretion from quiescent ECs inhibited mural cell migration, which likely led to stabilized mural cell coverage of mature vessels. Together, these findings demonstrate TME-dependent intertumoral TEC heterogeneity in CRC. They further indicate that TEC heterogeneity is regulated by SPARCL1, which promotes the cell quiescence and vessel homeostasis contributing to the favorable prognoses associated with Th1-TME CRCs.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Microambiente Tumoral , Animais , Neoplasias Colorretais/patologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Células Jurkat , Camundongos , Neovascularização Patológica/patologia
14.
J Hered ; 107(7): 654-659, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27638815

RESUMO

Wildfires are highly variable and can disturb habitats, leading to direct and indirect effects on the genetic characteristics of local populations. Florida scrub is a fire-dependent, highly fragmented, and severely threatened habitat. Understanding the effect of fire on genetic characteristics of the species that use this habitat is critically important. We investigated one such lizard, the Six-lined Racerunner (Aspidoscelis sexlineata), which has a strong preference for open areas. We collected Six-lined Racerunners (n = 154) from 11 sites in Highlands County, FL, and defined 2 time-since-last-fire (TSF) categories: recently burned and long unburned. We screened genetic variation at 6 microsatellites to estimate genetic differentiation and compare genetic diversity among sites to determine the relationship with TSF. A clear pattern exists between genetic diversity and TSF in the absence of strong genetic differentiation. Genetic diversity was greater and inbreeding was lower in sites with more recent TSF, and genetic characteristics had significantly larger variance in long unburned sites compared with more recently burned sites. Our results suggest that fire suppression increases variance in genetic characteristics of the Six-lined Racerunner. More generally, fire may benefit genetic characteristics of some species that use fire-dependent habitats and management efforts for such severely fragmented habitat will be challenged by the presence of multiple species with incompatible fire preferences.


Assuntos
Incêndios , Variação Genética , Genética Populacional , Lagartos/genética , Animais , Ecossistema , Florida
15.
Gen Comp Endocrinol ; 211: 14-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25448257

RESUMO

The enemy release hypothesis (ERH) posits that hosts encounter fewer infectious parasites when they arrive in new areas, so individuals that adjust their immune defenses most effectively should thrive and even expand the range of that species. An important aspect of vertebrate immune defense is inflammation, as it provides rapid defense against diverse parasites. Glucocorticoids (GCs) are integral to the regulation of inflammation, so here we investigated whether and how covariation in the expression of genes affecting the regulation of inflammation and GCs might have impacted the house sparrow (Passer domesticus) invasion of Kenya. Toll-like receptors 2 and 4 (TLRs) detect microbial threats and instigate inflammatory responses, whereas the glucocorticoid receptor (GR) is integral to resolving inflammation via both local and systemic pathways. As with a previous study on circulating leukocytes, we found that splenic TLR-4 and TLR-2 (the latter marginally non-significant) expression was higher in younger than older populations but only when differences in spleen size were considered; birds at the range edge had larger spleens. In regards to covariation, we found that TLR-2, TLR-4 and GR expression were closely inter-related within individuals, but covariation did not differ among populations. Subsequently, our data suggest that house sparrows are using variants of a common stress-immune regulatory mechanism to expand their Kenyan range.


Assuntos
Regulação da Expressão Gênica , Comportamento de Retorno ao Território Vital , Pardais/genética , Pardais/imunologia , Estresse Fisiológico/genética , Estresse Fisiológico/imunologia , Animais , Cidades , Quênia , Receptores de Glucocorticoides/metabolismo , Baço/metabolismo , Receptores Toll-Like/metabolismo
16.
Gen Comp Endocrinol ; 206: 227-34, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25125084

RESUMO

The mechanisms that enable animals to colonize new areas are little known, but growing evidence indicates that the regulation of stress hormones is important. Stress hormones probably influence invasions because they enable organisms to adjust their phenotypes depending on environmental context. Often, studies of stress hormones are based on single or a few samples from individuals even though the flexibility in the regulation of such hormones is what enables them to achieve homeostasis and facilitate performance. Here, we asked whether flexibility in the regulation of one stress hormone, corticosterone, was related to colonization success in one of the world's most successful avian invaders, the house sparrow (Passer domesticus). We studied Kenyan house sparrows, as the species was recently introduced there (around 1950) and has since expanded northwestward. Previous work in this system revealed that younger populations released more corticosterone during a restraint stressor than older populations. Our first goal was to discern whether such population differences were fixed or flexible in adulthood; our second goal was to determine whether individual identity explained any variation in corticosterone regulation. As before, we found that corticosterone responses to short-term restraint (i.e., stress responses), but not baseline corticosterone, were larger in younger populations. We also found that both baseline and stress-induced corticosterone measures were flexible; both metrics became similar among sites after one week of captivity. For stress responses, we also found that individual identity was important. Altogether, the present data suggest that the colonization of Kenya by house sparrows might have been facilitated by stress hormone regulatory flexibility.


Assuntos
Corticosterona/sangue , Pardais/fisiologia , Estresse Fisiológico , Animais , Quênia , Fenótipo , Dinâmica Populacional
17.
Mol Cell Biol ; 34(2): 196-209, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24190970

RESUMO

Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.


Assuntos
Proteínas de Ligação ao GTP/genética , Interferon gama/fisiologia , Fibras de Estresse/metabolismo , Actinas/química , Actinas/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , Polimerização , Ligação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Transporte Proteico , Ativação Transcricional
18.
Proc Biol Sci ; 281(1774): 20132690, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24258722

RESUMO

Interactions between hosts and parasites influence the success of host introductions and range expansions post-introduction. However, the physiological mechanisms mediating these outcomes are little known. In some vertebrates, variation in the regulation of inflammation has been implicated, perhaps because inflammation imparts excessive costs, including high resource demands and collateral damage upon encounter with novel parasites. Here, we tested the hypothesis that variation in the regulation of inflammation contributed to the spread of house sparrows (Passer domesticus) across Kenya, one of the world's most recent invasions of this species. Specifically, we asked whether inflammatory gene expression declines with population age (i.e. distance from Mombasa (dfM), the site of introduction around 1950). We compared expression of two microbe surveillance molecules (Toll-like receptors, TLRs-2 and 4) and a proinflammatory cytokine (interleukin-6, IL-6) before and after an injection of an immunogenic component of Gram-negative bacteria (lipopolysaccharide, LPS) among six sparrow populations. We then used a best-subset model selection approach to determine whether population age (dfM) or other factors (e.g. malaria or coccidian infection, sparrow density or genetic group membership) best-explained gene expression. For baseline expression of TLR-2 and TLR-4, population age tended to be the best predictor with expression decreasing with population age, although other factors were also important. Induced expression of TLRs was affected by LPS treatment alone. For induced IL-6, only LPS treatment reliably predicted expression; baseline expression was not explained by any factor. These data suggest that changes in microbe surveillance, more so than downstream control of inflammation via cytokines, might have been important to the house sparrow invasion of Kenya.


Assuntos
Interações Hospedeiro-Patógeno/genética , Passeriformes/microbiologia , Migração Animal , Animais , Resistência à Doença/genética , Expressão Gênica , Geografia , Espécies Introduzidas , Modelos Biológicos , Passeriformes/genética , Passeriformes/fisiologia , Densidade Demográfica
19.
J Hered ; 105(1): 60-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24336863

RESUMO

Introduced species offer an opportunity to study the ecological process of range expansions. Recently, 3 mechanisms have been identified that may resolve the genetic paradox (the seemingly unlikely success of introduced species given the expected reduction in genetic diversity through bottlenecks or founder effects): multiple introductions, high propagule pressure, and epigenetics. These mechanisms are probably also important in range expansions (either natural or anthropogenic), yet this possibility remains untested in vertebrates. We used microsatellite variation (7 loci) in house sparrows (Passer domesticus), an introduced species that has been spreading across Kenya for ~60 years, to determine if patterns of variation could explain how this human commensal overcame the genetic paradox and expresses such considerable phenotypic differentiation across this new range. We note that in some cases, polygenic traits and epistasis among genes, for example, may not have negative effects on populations. House sparrows arrived in Kenya by a single introduction event (to Mombasa, ~1950) and have lower genetic diversity than native European and introduced North American populations. We used Bayesian clustering of individuals (n = 233) to detect that at least 2 types of range expansion occurred in Kenya: one with genetic admixture and one with little to no admixture. We also found that genetic diversity increased toward a range edge, and the range expansion was consistent with long-distance dispersal. Based on these data, we expect that the Kenyan range expansion was anthropogenically influenced, as the expansions of other introduced human commensals may also be.


Assuntos
Distribuição Animal , Pardais/classificação , Pardais/genética , Animais , Teorema de Bayes , Análise por Conglomerados , Efeito Fundador , Loci Gênicos , Variação Genética , Espécies Introduzidas , Quênia , Repetições de Microssatélites , Fenótipo , Filogeografia
20.
Biol Lett ; 9(3): 20130181, 2013 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-23576781

RESUMO

As ranges expand, individuals encounter different environments at the periphery than at the centre of the range. Previously, we have shown that glucocorticoids (GCs) vary with range expansion: individuals at the range edge release more GCs in response to restraint. Here, we measured hippocampal mRNA expression of GC receptors (mineralocorticoid, MR and glucocorticoid, GR) in eight house sparrow (Passer domesticus) populations varying in age. We found that individuals closest to the range edge had the lowest expression of MR relative to GR; in all likelihood, this relationship was driven by a marginal reduction of MR mRNA at the range edge. Reduced MR (relative to GR) might allow enhanced GC binding to GR, the lower affinity receptor that would enhance a rapid physiological and behavioural response to stressors. The insights gained from this study are not only enlightening to introduced species, but may also predict how certain species will react as their ranges shift owing to anthropogenic changes.


Assuntos
Migração Animal , Receptores de Glucocorticoides/fisiologia , Pardais/fisiologia , Animais , Funções Verossimilhança , RNA Mensageiro/genética , Receptores de Glucocorticoides/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA