Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e19613, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810116

RESUMO

Marburg virus (MARV) is a causative agent of a severe hemorrhagic fever with high fatality rates endemic in central Africa. Current outbreaks of MARV in Equatorial Guinea and Tanzania underline the relevance of MARV as a public health emergency pathogen. In 2021, the first known human MARV case was confirmed in Guinea, West Africa. Since no infectious virus could be isolated from that fatal case in 2021, we generated recombinant (rec) MARV Guinea by reverse genetics in order to study and characterize this new MARV, which occurred in West Africa for the first time, in terms of its growth properties, detection by antibodies, and therapeutic potential compared to known MARV strains. Our results showed a solid viral replication of recMARV Guinea in human, bat, and monkey cell lines in comparison to other known MARV strains. We further demonstrated that replication of recMARV Guinea in cells can be inhibited by the nucleoside analogue remdesivir. Taken together, we could successfully reconstitute de novo the first West African MARV from Guinea showing similar replication kinetics in cells compared to other central African MARV strains. Our reverse genetics approach has proven successful in characterizing emerging viruses, especially when virus isolates are missing and viral genome sequences are incomplete.

2.
Immunity ; 53(6): 1296-1314.e9, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33296687

RESUMO

Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19.


Assuntos
COVID-19/metabolismo , Células Eritroides/patologia , Megacariócitos/fisiologia , Plasmócitos/fisiologia , SARS-CoV-2/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Circulação Sanguínea , COVID-19/imunologia , Células Cultivadas , Estudos de Coortes , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Análise de Sequência de RNA , Índice de Gravidade de Doença , Análise de Célula Única
3.
mBio ; 11(1)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098814

RESUMO

Ebola virus (EBOV) causes a severe and often fatal disease for which no approved vaccines or antivirals are currently available. EBOV VP30 has been described as a viral phosphoprotein, and nonphosphorylated VP30 is essential and sufficient to support secondary transcription in an EBOV-specific minigenome system; however, phosphorylatable serine residues near the N terminus of VP30 are required to support primary viral transcription as well as the reinitiation of VP30-mediated transcription at internal EBOV genes. While the dephosphorylation of VP30 by the cellular phosphatase PP2A was found to be mediated by nucleoprotein, the VP30-specific kinases and the role of phosphorylation remain unknown. Here, we report that serine-arginine protein kinase 1 (SRPK1) and SRPK2 phosphorylate serine 29 of VP30, which is located in an N-terminal R26xxS29 motif. Interaction with VP30 via the R26xxS29 motif recruits SRPK1 into EBOV-induced inclusion bodies, the sites of viral RNA synthesis, and an inhibitor of SRPK1/SRPK2 downregulates primary viral transcription. When the SRPK1 recognition motif of VP30 was mutated in a recombinant EBOV, virus replication was severely impaired. It is presumed that the interplay between SRPK1 and PP2A in the EBOV inclusions provides a comprehensive regulatory circuit to ensure the activity of VP30 in EBOV transcription. Thus, the identification of SRPK1 is an important mosaic stone that completes our picture of the players involved in Ebola virus transcription regulation.IMPORTANCE The largest Ebola virus (EBOV) epidemic in West Africa ever caused more than 28,000 cases and 11,000 deaths, and the current EBOV epidemic in the Democratic Republic of the Congo continues, with more than 3,000 cases to date. Therefore, it is essential to develop antivirals against EBOV. Recently, an inhibitor of the cellular phosphatase PP2A-mediated dephosphorylation of the EBOV transcription factor VP30 has been shown to suppress the spread of Ebola virus. Here, we identified the protein kinase SRPK1 as a VP30-specific kinase that phosphorylates serine 29, the same residue that is dephosphorylated by PP2A. SRPK1-mediated phosphorylation of serine 29 enabled primary viral transcription. Mutation of the SRPK1 recognition motif in VP30 resulted in significant growth inhibition of EBOV. Similarly, elevation of the phosphorylation status of serine 29 by overexpression of SRPK1 inhibited EBOV growth, highlighting the importance of reversible phosphorylation of VP30 as a potential therapeutic target.


Assuntos
Ebolavirus/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , África Ocidental , Animais , Linhagem Celular , Sobrevivência Celular , Chlorocebus aethiops , Ebolavirus/genética , Células HEK293 , Doença pelo Vírus Ebola/virologia , Humanos , Corpos de Inclusão Viral/metabolismo , Nucleoproteínas , Fosforilação , RNA Viral/genética , Fatores de Transcrição/metabolismo , Células Vero , Replicação Viral/genética
4.
Virology ; 512: 39-47, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28915404

RESUMO

Zaire Ebolavirus (EBOV) causes a severe feverish disease with high case fatality rates. Transcription of EBOV is dependent on the activity of the nucleocapsid protein VP30 which represents an essential viral transcription factor. Activity of VP30 is regulated via phosphorylation at six N-terminal serine residues. Recent data demonstrated that dynamic phosphorylation and dephosphorylation of serine residue 29 is essential for transcriptional support activity of VP30. To analyze the spatio/temporal dynamics of VP30 phosphorylation, we generated a peptide antibody recognizing specifically VP30 phosphorylated at serine 29. Using this antibody we could demonstrate that (i) the majority of VP30 molecules in EBOV-infected cells is dephosphorylated at the crucial position serine 29, (ii) both, VP30 phosphorylation and dephosphorylation take place in viral inclusion bodies that are induced by the nucleoprotein NP and (iii) NP influences the phosphorylation state of VP30.


Assuntos
Corpos de Inclusão Viral/fisiologia , Nucleoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Regulação Viral da Expressão Gênica/fisiologia , Humanos , Proteínas do Nucleocapsídeo , Fosforilação , Fatores de Transcrição/genética , Proteínas Virais/genética , Replicação Viral/fisiologia
5.
Genes Chromosomes Cancer ; 56(4): 255-265, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27792260

RESUMO

HER2-positive breast cancers are a heterogeneous group of tumors, which share amplification and overexpression of HER2. In routine diagnostics, the HER2 (ERBB2) status is currently assessed by immunohistochemistry (IHC) and in situ hybridization (ISH). Data on targeted next-generation sequencing (NGS) approaches that could be used to determine the HER2 status are sparse. Employing two breast cancer-related gene panels, we performed targeted NGS of 41 FFPE breast cancers for which full pathological work-up including ISH and IHC results was available. Selected cases were analyzed by qPCR. Of the 41 cases, the HER2 status of the 4 HER2-positive and 6 HER2-negative tumors was independently detected by our NGS approach achieving a concordance rate of 100%. The remaining 31 cases were equivocal HER2 cases by IHC of which 5 showed amplification of HER2 by ISH. Our NGS approach classified all non-amplified cases correctly as HER2 negative and corroborated all but one of the 5 cases with amplified HER2 as detected by ISH. For the overall cohort, concordance between the gold standard and NGS was 97.6% (sensitivity 88.9% and specificity 100%). Additionally, we observed mutations in PIK3CA (44%), HER2 (8%), and CDH1 (6%) among others. Amplifications were found in CCND1 (12%), followed by MYC (10%) and EGFR (2%) and deletions in CDKN2A (10%), MAP2K4 and PIK3R1 (2% each). We here show that targeted NGS data can be used to interrogate the HER2 status with high specificity and high concordance with gold standard methods. Moreover, this approach identifies additional genetic events that may be clinically exploitable. © 2016 Wiley Periodicals, Inc.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação/genética , Receptor ErbB-2/genética , Neoplasias da Mama/patologia , Feminino , Amplificação de Genes , Humanos , Hibridização in Situ Fluorescente , Estadiamento de Neoplasias , Prognóstico
6.
Diagn Pathol ; 11(1): 133, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27863497

RESUMO

BACKGROUND: Inhibition of the oncogenic fusion-gene EML4-ALK is a current first-line approach for patients with stage IV non-small cell lung cancer. While FISH was established as the gold standard for identifying these patients, there is accumulating evidence that other methods of detection, i.e., immunohistochemistry and next-generation sequencing (NGS), exist that may be equally successful. However, the concordance of these methods is under investigation. CASE PRESENTATION: Adding to the current literature, we here report a 56 year old female never-smoker with stage IV lung adenocarcinoma whose biopsy was IHC and FISH inconclusive but positive in NGS. Retroactive profiling of the resection specimen corroborated fusion reads obtained by NGS, FISH-positivity and showed weak ALK-positivity by IHC. Consequently, we diagnosed the case as ALK-positive rendering the patient eligible to crizotinib treatment. CONCLUSIONS: With IHC on biopsy material only, this case would have been overlooked withholding effective therapy.


Assuntos
Adenocarcinoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/análise , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Biópsia , Análise Mutacional de DNA/métodos , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias
7.
J Virol ; 90(10): 4914-4925, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26937028

RESUMO

UNLABELLED: Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. IMPORTANCE: The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that the situation is more complex and that primary transcription as well as the rescue of recombinant Ebola virus also requires the transient phosphorylation of VP30. VP30 encodes six N-proximal serine residues that serve as phosphorylation acceptor sites. The present study shows that the dynamic phosphorylation of serine at position 29 alone is sufficient to activate primary viral transcription. Our results indicate a series of phosphorylation/dephosphorylation events that trigger binding to and release from the nucleocapsid and transcription complex to be essential for the full activity of VP30.


Assuntos
Ebolavirus/genética , Ebolavirus/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral , Animais , Ebolavirus/crescimento & desenvolvimento , Células HEK293 , Doença pelo Vírus Ebola/virologia , Humanos , Nucleocapsídeo/metabolismo , Fosforilação , RNA Viral/genética , RNA Viral/metabolismo , Ativação Transcricional , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA