Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(693): eabp9528, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099633

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive, irreversible, and rapidly fatal interstitial lung disease marked by the replacement of lung alveoli with dense fibrotic matrices. Although the mechanisms initiating IPF remain unclear, rare and common alleles of genes expressed in lung epithelia, combined with aging, contribute to the risk for this condition. Consistently, single-cell RNA sequencing (scRNA-seq) studies have identified lung basal cell heterogeneity in IPF that might be pathogenic. We used single-cell cloning technologies to generate "libraries" of basal stem cells from the distal lungs of 16 patients with IPF and 10 controls. We identified a major stem cell variant that was distinguished from normal stem cells by its ability to transform normal lung fibroblasts into pathogenic myofibroblasts in vitro and to activate and recruit myofibroblasts in clonal xenografts. This profibrotic stem cell variant, which was shown to preexist in low quantities in normal and even fetal lungs, expressed a broad network of genes implicated in organ fibrosis and showed overlap in gene expression with abnormal epithelial signatures identified in previously published scRNA-seq studies of IPF. Drug screens highlighted specific vulnerabilities of this profibrotic variant to inhibitors of epidermal growth factor and mammalian target of rapamycin signaling as prospective therapeutic targets. This profibrotic stem cell variant in IPF was distinct from recently identified profibrotic stem cell variants in chronic obstructive pulmonary disease and may extend the notion that inappropriate accrual of minor and preexisting stem cell variants contributes to chronic lung conditions.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Miofibroblastos/patologia , Fibroblastos/patologia , Células-Tronco/metabolismo , Clonagem Molecular
2.
Cell ; 181(4): 848-864.e18, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32298651

RESUMO

Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.


Assuntos
Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Animais , Feminino , Fibrose/fisiopatologia , Humanos , Inflamação/patologia , Pulmão/metabolismo , Masculino , Metaplasia/fisiopatologia , Camundongos , Pessoa de Meia-Idade , Neutrófilos/imunologia , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Análise de Célula Única/métodos , Células-Tronco/metabolismo
3.
Nat Protoc ; 15(5): 1612-1627, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238950

RESUMO

'Adult' or 'somatic' stem cells harbor an intrinsic ability to regenerate tissues. Heterogeneity of such stem cells along the gastrointestinal tract yields the known segmental specificity of this organ and may contribute to the pathology of certain enteric conditions. Here we detail technology for the generation of 'libraries' of clonogenic cells from 1-mm-diamter endoscopic biopsy samples from the human gastrointestinal tract. Each of the 150-300 independent clones in a typical stem cell library can be clonally expanded to billions of cells in a few weeks while maintaining genomic stability and the ability to undergo multipotent differentiation to the specific epithelia from which the sample originated. The key to this methodology is the intrinsic immortality of normal intestinal stem cells (ISCs) and culture systems that maintain them as highly immature, ground-state ISCs marked by a single-cell clonogenicity of 70% and a corresponding 250-fold proliferative advantage over spheroid technologies. Clonal approaches such as this enhance the resolution of molecular genetics, make genome editing easier, and may be useful in regenerative medicine, unravelling heterogeneity in disease, and facilitating drug discovery.


Assuntos
Células-Tronco Adultas/fisiologia , Técnicas de Cultura de Células , Mucosa Intestinal/citologia , Células 3T3 , Animais , Biópsia , Endoscopia Gastrointestinal , Humanos , Camundongos
4.
Integr Mol Med ; 6(4)2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463081

RESUMO

The recent technical advance in cloning and culturing ground-state intestinal stem cells (ISC) provides us an opportunity of accurate assessment of age-related impact on the function of highly proliferative intestinal stem cells. Our ability of indefinitely and robustly expanding single-stem-cell derived pedigrees in vitro allows us to study intestinal stem cells at the clonal level. Interestingly, comparable number of ISC clones was yielded from 1mm endoscopic biopsy of all donors despite the age. They were passaged in vitro as pedigrees and expanded to 1 billion cells in approximately sixty days without changes in stemness demonstrated by clonogenicity and multipotency. Therefore, our study shows that ISCs from a wide range of ages can be cloned and expanded to unlimited number in vitro with similar efficiency and stability. These patient-derived ISCs harbor intrinsic immortality and are ideal for autologous transplantation, supporting the promise of adult-stem-cell based personalized medicine.

6.
Nat Commun ; 9(1): 216, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335443

RESUMO

EGFR-mutant lung adenocarcinomas (LUAD) display diverse clinical trajectories and are characterized by rapid but short-lived responses to EGFR tyrosine kinase inhibitors (TKIs). Through sequencing of 79 spatially distinct regions from 16 early stage tumors, we show that despite low mutation burdens, EGFR-mutant Asian LUADs unexpectedly exhibit a complex genomic landscape with frequent and early whole-genome doubling, aneuploidy, and high clonal diversity. Multiple truncal alterations, including TP53 mutations and loss of CDKN2A and RB1, converge on cell cycle dysregulation, with late sector-specific high-amplitude amplifications and deletions that potentially beget drug resistant clones. We highlight the association between genomic architecture and clinical phenotypes, such as co-occurring truncal drivers and primary TKI resistance. Through comparative analysis with published smoking-related LUAD, we postulate that the high intra-tumor heterogeneity observed in Asian EGFR-mutant LUAD may be contributed by an early dominant driver, genomic instability, and low background mutation rates.


Assuntos
Adenocarcinoma/genética , Receptores ErbB/genética , Sequenciamento do Exoma/métodos , Genômica/métodos , Neoplasias Pulmonares/genética , Mutação , Adenocarcinoma/etnologia , Adenocarcinoma/patologia , Povo Asiático/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Predisposição Genética para Doença/etnologia , Predisposição Genética para Doença/genética , Humanos , Neoplasias Pulmonares/etnologia , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia
7.
Nature ; 517(7536): 616-20, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25383540

RESUMO

Lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis involve the progressive and inexorable destruction of oxygen exchange surfaces and airways, and have emerged as a leading cause of death worldwide. Mitigating therapies, aside from impractical organ transplantation, remain limited and the possibility of regenerative medicine has lacked empirical support. However, it is clinically known that patients who survive sudden, massive loss of lung tissue from necrotizing pneumonia or acute respiratory distress syndrome often recover full pulmonary function within six months. Correspondingly, we recently demonstrated lung regeneration in mice following H1N1 influenza virus infection, and linked distal airway stem cells expressing Trp63 (p63) and keratin 5, called DASC(p63/Krt5), to this process. Here we show that pre-existing, intrinsically committed DASC(p63/Krt5) undergo a proliferative expansion in response to influenza-induced lung damage, and assemble into nascent alveoli at sites of interstitial lung inflammation. We also show that the selective ablation of DASC(p63/Krt5) in vivo prevents this regeneration, leading to pre-fibrotic lesions and deficient oxygen exchange. Finally, we demonstrate that single DASC(p63/Krt5)-derived pedigrees differentiate to type I and type II pneumocytes as well as bronchiolar secretory cells following transplantation to infected lung and also minimize the structural consequences of endogenous stem cell loss on this process. The ability to propagate these cells in culture while maintaining their intrinsic lineage commitment suggests their potential in stem cell-based therapies for acute and chronic lung diseases.


Assuntos
Queratina-5/metabolismo , Pulmão/citologia , Pulmão/fisiologia , Fosfoproteínas/metabolismo , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo , Transativadores/metabolismo , Animais , Bronquíolos/citologia , Bronquíolos/virologia , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Pulmão/patologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Oxigênio/metabolismo , Linhagem , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/virologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , Reepitelização , Transplante de Células-Tronco
8.
Am J Pathol ; 179(1): 199-210, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21703402

RESUMO

Complications of acute respiratory distress syndrome (ARDS) are common among critically ill patients infected with highly pathogenic influenza viruses. Macrophages and neutrophils constitute the majority of cells recruited into infected lungs, and are associated with immunopathology in influenza pneumonia. We examined pathological manifestations in models of macrophage- or neutrophil-depleted mice challenged with sublethal doses of influenza A virus H1N1 strain PR8. Infected mice depleted of macrophages displayed excessive neutrophilic infiltration, alveolar damage, and increased viral load, later progressing into ARDS-like pathological signs with diffuse alveolar damage, pulmonary edema, hemorrhage, and hypoxemia. In contrast, neutrophil-depleted animals showed mild pathology in lungs. The brochoalveolar lavage fluid of infected macrophage-depleted mice exhibited elevated protein content, T1-α, thrombomodulin, matrix metalloproteinase-9, and myeloperoxidase activities indicating augmented alveolar-capillary damage, compared to neutrophil-depleted animals. We provide evidence for the formation of neutrophil extracellular traps (NETs), entangled with alveoli in areas of tissue injury, suggesting their potential link with lung damage. When co-incubated with infected alveolar epithelial cells in vitro, neutrophils from infected lungs strongly induced NETs generation, and augmented endothelial damage. NETs induction was abrogated by anti-myeloperoxidase antibody and an inhibitor of superoxide dismutase, thus implying that NETs generation is induced by redox enzymes in influenza pneumonia. These findings support the pathogenic effects of excessive neutrophils in acute lung injury of influenza pneumonia by instigating alveolar-capillary damage.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Vírus da Influenza A Subtipo H1N1/imunologia , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/complicações , Pneumonia/complicações , Síndrome do Desconforto Respiratório/imunologia , Animais , Western Blotting , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Cães , Feminino , Técnicas Imunoenzimáticas , Rim/citologia , Rim/imunologia , Rim/virologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Neutrófilos/patologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Peroxidase/metabolismo , Pneumonia/patologia , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/virologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA