Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802186

RESUMO

Alkene monooxygenases (MOs) are soluble di-iron-containing enzymes found in bacteria that grow on alkenes. Here, we report improved heterologous expression systems for the propene MO (PmoABCD) and ethene MO (EtnABCD) from Mycobacterium chubuense strain NBB4. Strong functional expression of PmoABCD and EtnABCD was achieved in Mycobacterium smegmatis mc2155, yielding epoxidation activities (62 and 27 nmol/min/mg protein, respectively) higher than any reported to date for heterologous expression of a di-iron MO system. Both PmoABCD and EtnABCD were specialized for the oxidation of gaseous alkenes (C2 to C4), and their activity was much lower on liquid alkenes (C5 to C8). Despite intensive efforts to express the complete EtnABCD enzyme in Escherichia coli, this was not achieved, although recombinant EtnB and EtnD proteins could be purified individually in soluble form. The biochemical function of EtnD as an oxidoreductase was confirmed (1.36 µmol cytochrome c reduced/min/mg protein). Cloning the EtnABCD gene cluster into Pseudomonas putida KT2440 yielded detectable epoxidation of ethene (0.5 nmol/min/mg protein), and this could be stimulated (up to 1.1 nmol/min/mg protein) by the coexpression of cpn60 chaperonins from either Mycobacterium spp. or E. coli Successful expression of the ethene MO in a Gram-negative host was validated by both whole-cell activity assays and peptide mass spectrometry of induced proteins seen on SDS-PAGE gels.IMPORTANCE Alkene MOs are of interest for their potential roles in industrial biocatalysis, most notably for the stereoselective synthesis of epoxides. Wild-type bacteria that grow on alkenes have high activities for alkene oxidation but are problematic for biocatalysis, since they tend to consume the epoxide products. Using recombinant biocatalysts is the obvious alternative, but a major bottleneck is the low activities of recombinant alkene MOs. Here, we provide new high-activity recombinant biocatalysts for alkene oxidation, and we provide insights into how to further improve these systems.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Expressão Gênica , Mycobacterium smegmatis/genética , Mycobacterium/enzimologia , Oxigenases/genética , Pseudomonas putida/genética , Alcenos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citocromos c , Escherichia coli/metabolismo , Etilenos/metabolismo , Cinética , Mycobacterium/genética , Mycobacterium smegmatis/metabolismo , Oxigenases/química , Oxigenases/metabolismo , Pseudomonas putida/metabolismo
2.
Appl Environ Microbiol ; 82(17): 5298-308, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342553

RESUMO

UNLABELLED: 1,2-Dichloroethane (DCA) is a problematic xenobiotic groundwater pollutant. Bacteria are capable of biodegrading DCA, but the evolution of such bacteria is not well understood. In particular, the mechanisms by which bacteria acquire the key dehalogenase genes dhlA and dhlB have not been well defined. In this study, the genomic context of dhlA and dhlB was determined in three aerobic DCA-degrading bacteria (Starkeya novella strain EL1, Xanthobacter autotrophicus strain EL4, and Xanthobacter flavus strain EL8) isolated from a groundwater treatment plant (GTP). A haloalkane dehalogenase gene (dhlA) identical to the canonical dhlA gene from Xanthobacter sp. strain GJ10 was present in all three isolates, and, in each case, the dhlA gene was carried on a variant of a 37-kb circular plasmid, which was named pDCA. Sequence analysis of the repA replication initiator gene indicated that pDCA was a member of the pTAR plasmid family, related to catabolic plasmids from the Alphaproteobacteria, which enable growth on aromatics, dimethylformamide, and tartrate. Genes for plasmid replication, mobilization, and stabilization were identified, along with two insertion sequences (ISXa1 and ISPme1) which were likely to have mobilized dhlA and dhlB and played a role in the evolution of aerobic DCA-degrading bacteria. Two haloacid dehalogenase genes (dhlB1 and dhlB2) were detected in the GTP isolates; dhlB1 was most likely chromosomal and was similar to the canonical dhlB gene from strain GJ10, while dhlB2 was carried on pDCA and was not closely related to dhlB1 Heterologous expression of the DhlB2 protein confirmed that this plasmid-borne dehalogenase was capable of chloroacetate dechlorination. IMPORTANCE: Earlier studies on the DCA-degrading Xanthobacter sp. strain GJ10 indicated that the key dehalogenases dhlA and dhlB were carried on a 225-kb linear plasmid and on the chromosome, respectively. The present study has found a dramatically different gene organization in more recently isolated DCA-degrading Xanthobacter strains from Australia, in which a relatively small circular plasmid (pDCA) carries both dhlA and dhlB homologs. pDCA represents a true organochlorine-catabolic plasmid, first because its only obvious metabolic phenotype is dehalogenation of organochlorines, and second because acquisition of this plasmid provides both key enzymes required for carbon-chlorine bond cleavage. The discovery of the alternative haloacid dehalogenase dhlB2 in pDCA increases the known genetic diversity of bacterial chloroacetate-hydrolyzing enzymes.


Assuntos
Alphaproteobacteria/isolamento & purificação , Dicloretos de Etileno/metabolismo , Água Subterrânea/microbiologia , Plasmídeos/genética , Poluentes Químicos da Água/metabolismo , Xanthobacter/isolamento & purificação , Alphaproteobacteria/química , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Sequência de Aminoácidos , Austrália , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Dados de Sequência Molecular , Plasmídeos/metabolismo , Alinhamento de Sequência , Poluição Química da Água , Xanthobacter/química , Xanthobacter/genética , Xanthobacter/metabolismo
3.
Microbiology (Reading) ; 160(Pt 6): 1267-1277, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682027

RESUMO

The hydrocarbon monooxygenase (HMO) of Mycobacterium NBB4 is a member of the copper-containing membrane monooxygenase (CuMMO) superfamily, which also contains particulate methane monooxygenases (pMMOs) and ammonia monooxygenases (AMOs). CuMMOs have broad applications due to their ability to catalyse the oxidation of difficult substrates of environmental and industrial relevance. Most of our understanding of CuMMO biochemistry is based on pMMOs and AMOs as models. All three available structures are from pMMOs. These share two metal sites: a dicopper centre coordinated by histidine residues in subunit-B and a 'variable-metal' site coordinated by carboxylate and histidine residues from subunit-C. The exact nature and role of these sites is strongly debated. Significant barriers to progress have been the physiologically specialized nature of methanotrophs and autotrophic ammonia-oxidizers, lack of a recombinant expression system for either enzyme and difficulty in purification of active protein. In this study we use the newly developed HMO model system to perform site-directed mutagenesis on the predicted metal-binding residues in the HmoB and HmoC of NBB4 HMO. All mutations of predicted HmoC metal centre ligands abolished enzyme activity. Mutation of a predicted copper-binding residue of HmoB (B-H155V) reduced activity by 81 %. Mutation of a site that shows conservation within physiologically defined subgroups of CuMMOs was shown to reduce relative HMO activity towards larger alkanes. The study demonstrates that the modelled dicopper site of subunit-B is not sufficient for HMO activity and that a metal centre predicted to be coordinated by residues in subunit-C is essential for activity.


Assuntos
Cobre/metabolismo , Hidrocarbonetos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mycobacterium/enzimologia , Domínio Catalítico , Membrana Celular/enzimologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
4.
Environ Sci Technol ; 47(23): 13668-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24175727

RESUMO

A pilot-scale membrane bioreactor (MBR) was tested for bioremediation of 1,2-dichloroethane (DCA) in groundwater. Pyrosequencing of 16S rDNA was used to study changes in the microbiology of the MBR over 137 days, including a 67 day initial adaptation phase of increasing DCA concentration. The bacterial community in the MBR was distinct from those in soil and groundwater at the same site, and was dominated by alpha- and beta- proteobacteria, including Rhodobacter, Methylibium, Rhodopseudomonas, Methyloversatilis, Caldilinea, Thiobacillus, Azoarcus, Hyphomicrobium, and Leptothrix. Biodegradation of DCA in the MBR began after 26 days, and was sustained for the remainder of the experiment. A quantitative PCR (qPCR) assay for the dehalogenase gene dhlA was developed to monitor DCA-degrading bacteria in the MBR, and a positive correlation was seen between dhlA gene abundance and the cumulative amount of DCA that had entered the MBR. Genera previously associated with aerobic DCA biodegradation (Xanthobacter, Ancylobacter, Azoarcus) were present in the MBR, and the abundance of Azoarcus correlated well with dhlA gene abundance. This study shows that MBRs can be an effective method for removal of DCA from groundwater, and that the dhlA qPCR is a rapid and sensitive method for detection of DCA-degrading bacteria.


Assuntos
Reatores Biológicos/microbiologia , Dicloretos de Etileno/metabolismo , Água Subterrânea/química , Hidrolases/genética , Proteobactérias/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Primers do DNA/genética , Variação Genética , Hidrolases/classificação , Hidrolases/metabolismo , Microscopia de Fluorescência , New South Wales , Reação em Cadeia da Polimerase , Proteobactérias/genética , RNA Ribossômico 16S/genética
5.
Microbiology (Reading) ; 157(Pt 12): 3349-3360, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21948046

RESUMO

Integrons are genetic elements that can capture and express genes packaged as gene cassettes. Here we report new methods that allow integrons to be studied and manipulated in their native bacterial hosts. Synthetic gene cassettes encoding gentamicin resistance (aadB) and green fluorescence (gfp), or lactose metabolism (lacZY), were made by PCR and self-ligation, converted to large tandem arrays by multiple displacement amplification, and introduced into Escherichia coli or Pseudomonas stutzeri strains via electroporation or natural transformation. Recombinants (Gm(R) or Lac(+)) were obtained at frequencies ranging from 10(1) to 10(6) c.f.u. (µg DNA)(-1). Cassettes were integrated by site-specific recombination at the integron attI site in nearly all cases examined (370/384), including both promoterless and promoter-containing cassettes. Fluorometric analysis of gfp-containing recombinants revealed that expression levels from the integron-associated promoter P(C) were five- to 10-fold higher in the plasmid-borne integron In3 compared with the P. stutzeri chromosomal integrons. Integration of lacZY cassettes into P. stutzeri integrons allowed the bacteria to grow on lactose, and the lacZY gene cassette was stably maintained in the absence of selection. This study is believed to be the first to show natural transformation by gene cassettes, and integron-mediated capture of catabolic gene cassettes.


Assuntos
Biotecnologia/métodos , Genética Microbiana/métodos , Integrons , Mutagênese Insercional/métodos , Escherichia coli/genética , Genes Reporter , Genes Sintéticos , Pseudomonas stutzeri/genética , Recombinação Genética , Transformação Bacteriana
6.
J Microbiol Methods ; 86(3): 320-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21689690

RESUMO

Molecular tools for Gram-positive bacteria such as Mycobacterium are less well-developed than those for Gram-negatives such as Escherichiacoli. This has slowed the molecular-genetic characterisation of Mycobacterium spp, which is unfortunate, since this genus has high medical, environmental and industrial significance. Here, we developed a new Mycobacterium shuttle vector (pMycoFos, 12.5kb, Km(R)) which combines desirable features of several previous vectors (controllable copy number in E. coli, inducible gene expression in Mycobacterium) and provides a new multiple cloning site compatible with large inserts of high-GC content DNA. Copy number control in E. coli was confirmed by the increased Km(R) of cultures after arabinose induction and the greater DNA yield of vector from arabinose-induced cultures. Measurement of beta-galactosidase activity in pMycoFos clones carrying the lacZ gene showed that in Mycobacterium smegmatis mc(2)-155, expression was inducible by acetamide, but in E. coli EPI300, the expression level was primarily determined by the vector copy number. Examination of protein profiles on SDS-PAGE gels confirmed the beta-galactosidase assay results. Construction of a fosmid library with the new vector confirmed that it could carry large DNA inserts. The new vector enabled the stable cloning and expression of an ethene monooxygenase gene cluster, which had eluded previous attempts at heterologous expression.


Assuntos
Variações do Número de Cópias de DNA , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Mycobacterium/genética , Clonagem Molecular , Óperon Lac/genética , Análise Serial de Proteínas , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA