Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34640218

RESUMO

Struvite precipitation from Wastewater involves an excess of ammonium to create a supersaturated initial solution. The remaining fraction can be a threat to the environment. This work combined struvite precipitation and ammonium sorption using natural zeolite to decrease the ammonium level in the effluent. Two approaches of estimation of feed sample doses were used. One consisted of gradient experiments for ammonium precipitation to the asymptotic level and was combined with clinoptilolite to lower the ammonium level in the effluent. This approach used doses of 0.05:1.51:0.61:1 of Ca:Mg:NH4+:PO43- mole ratios, respectively. In contrast, three level design with narrowed NH4+:PO43- range reached 0.25:1.51:0.8:1 for Ca:Mg:NH4+:PO43- mole ratios. The addition of zeolite decreased effluent ammonium concentration. In both ways, the P and N recoveries were higher than 94% and 72%, respectively. The complexity of the precipitation mixture decreased the ammonium sorption capacity (Qe) of clinoptilolite from Qe of 0.52 to 0.10 meq∙g-1 in single and complex solutions, respectively. Thermodynamically, the addition of 1.5 % of clinoptilolite changed the struvite precipitation spontaneity from ∆G of -5.87 to -5.42 kJ·mol-1 and from 9.66 to 9.56 kJ·mol-1 for gradient and three level experimental procedures, respectively. Thus, clinoptilolite demonstrated a positive effect on the struvite precipitation process and its environmental impact.

2.
Poult Sci ; 100(11): 101416, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607152

RESUMO

This paper presents attempts to enrich hens eggs with ions of copper, manganese, and zinc through the use of new feed additives (19 mg Cu2+; 124 mg Mn2+ and 85 mg Zn2+) such as biomass of alfalfa and goldenrod after extraction with supercritical carbon dioxide enriched with microelements via biosorption. Mechanical parameters of eggs (shell thickness and strength, Haugh unite), hen's laying performance, microelements content in albumen and yolk were examined and the transfer factor from feed to eggs was determined. The highest transfer of microelements content in albumen occurred in the group of hens fed with enriched goldenrod in a 100% dose (daily dose of microelements from biomass; Cu2+ 106%; Mn2+ 104%; Zn2+ 104% more in comparison to the inorganic salt group), while the highest yolk enrichment with microelements manifested itself for hens fed with enriched goldenrod in a 50% dose (daily dose of microelements from biomass; Cu2+ 32%; Zn2+ 22% more in comparison to the inorganic salt group). These groups also had the highest total microelements concentration. Mechanical properties of eggs varied insignificantly during the trial. Production parameters did not differ statistically among all experimental group. Eggs produced with need additives had better organoleptic parameters than fed with conventional premixes, which is why they were preferred by the respondents. The presented technology allows obtaining low-cost feed materials characterized by high bioavailability of components. The produced feed additives can serve as potential material for biofortification of eggs with nutrients.


Assuntos
Galinhas , Micronutrientes , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Ovos , Óvulo , Zinco
3.
Sci Total Environ ; 754: 141983, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254892

RESUMO

Soil depletion with absorbed forms of microelements is a realistic problem leading to the formation of many human, plant, animal diseases related with micronutrient deficiencies. Searching for new ways to solve this problem is a crucial for the agro-chemical approach to food production. There are many research papers on plant micronutrient fertilization. However, there is still a lack of systematic review of the literature, which summarizes the most recent knowledge on biofortification of food of plant origin with microelements. This work is a systematic review which presents the various methodologies and compares the results of the applied doses and types of fertilizer formulation with the yield and micronutrient content of edible parts of plants. The PRISMA protocol-based review of the most recent literature data from the last 5 years (2015-2020) concerns enrichment of plants with selenium and iodine. These elements, in contrast to other microelements (zinc, manganese, iron, copper and others) are given to plants most often in anionic form: selenium - SeO32- and SeO42-, iodine - I- and IO3-, making them a separate subgroup of microelements. The review focuses on original research papers (not reviews), collected in 3 popular scientific databases: Scopus, Web of Knowledge, PubMed. This study shows how to effectively cope with hidden hunger taking into account the significance of optimized fertilization. Based on the collected data, the best method of micronutrients administration an integrated fortification strategy for selected trace elements and prospects in research/action development was proposed. It was found that the best way to enrich plants with selenium is foliar fertilization with Se(VI), in increased doses. The effectiveness of fortification is supported by the balanced nutrients fertilization, the presence of microorganisms and selection of plant varieties. Foliar fertilization, in increased doses with iodide (I-) is in turn an effective way to enrich plants with iodine.


Assuntos
Biofortificação , Iodo , Selênio , Animais , Humanos , Iodetos , Plantas Comestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA