Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1416538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011310

RESUMO

Optimization of a breeding program requires assessing and quantifying empirical genetic trends made through past efforts relative to the current breeding strategies, germplasm, technologies, and policy. To establish the genetic trends in the Kenyan Highland Maize Breeding Program (KHMP), a two-decade (1999-2020) historical dataset from the Preliminary Variety Trials (PVT) and Advanced Variety Trials (AVT) was analyzed. A mixed model analysis was used to compute the genetic gains for traits based on the best linear unbiased estimates in the PVT and AVT evaluation stages. A positive significant genetic gain estimate for grain yield of 88 kg ha-1 year-1 (1.94% year-1) and 26 kg ha-1 year-1 (0.42% year-1) was recorded for PVT and AVT, respectively. Root lodging, an important agronomic trait in the Kenya highlands, had a desired genetic gain of -2.65% year-1 for AVT. Results showed improvement in resistance to Turcicum Leaf Blight (TLB) with -1.19% and -0.27% year-1 for the PVT and AVT, respectively. Similarly, a significant genetic trend of -0.81% was noted for resistance to Gray Leaf Spot (GLS) in AVT. These findings highlight the good progress made by KHMP in developing adapted maize hybrids for Kenya's highland agroecology. Nevertheless, the study identified significant opportunities for the KHMP to make even greater genetic gains for key traits with introgression of favorable alleles for various traits, implementing a continuous improvement plan including marker-assisted forward breeding, sparse testing, and genomic selection, and doubled haploid technology for line development.

2.
Sci Rep ; 10(1): 7320, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355284

RESUMO

Aluminum (Al) toxicity on acid soils adversely affects maize yields, which can be overcome by combining soil amendments with genetic tolerance. In maize, ZmMATE1 confers Al tolerance via Al-activated citrate release, whereby citrate forms non-toxic complexes with Al3+ in the rhizosphere. Here, we investigated Al tolerance mechanisms in maize germplasm originated from Kenya based on quantitative trait loci (QTL) mapping. Five QTLs and four epistatic interactions explained ~51% of the phenotypic variation for Al tolerance. The lack of Al tolerance QTL on chromosome 6 and the much lower expression of ZmMATE1 in both Kenyan lines than in Cateto Al237, which donates the superior allele of ZmMATE1, strongly indicate that this gene does not play a significant role in Al tolerance in neither parent. In turn, maize homologs to genes previously implicated in Al tolerance in other species, ZmNrat1, ZmMATE3, ZmWRKY and ZmART1, co-localized with Al tolerance QTL and were more highly expressed in the parent that donate favorable QTL alleles. However, these candidate genes will require further studies for functional validation on maize Al tolerance. The existence of Al tolerance mechanisms independent from ZmMATE1 suggests it is possible to develop highly Al tolerant cultivars by pyramiding complementary Al tolerance genes in maize.


Assuntos
Alumínio/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Zea mays/efeitos dos fármacos , Alelos , Mapeamento Cromossômico , Epistasia Genética , Perfilação da Expressão Gênica , Ligação Genética , Genótipo , Quênia , Modelos Genéticos , Fenótipo , Raízes de Plantas/metabolismo , Locos de Características Quantitativas , Rizosfera , Zea mays/genética , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA