Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(632): eabh1478, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35171653

RESUMO

Innate immune defense against deep tissue infection by Staphylococcus aureus is orchestrated by fibroblasts that become antimicrobial when triggered to differentiate into adipocytes. However, the role of this process in noninfectious human diseases is unknown. To investigate the potential role of adipogenesis by dermal fibroblasts in acne, a disorder triggered by Cutibacterium acnes, single-cell RNA sequencing was performed on human acne lesions and mouse skin challenged by C. acnes. A transcriptome consistent with adipogenesis was observed within specific fibroblast subsets from human acne and mouse skin lesions infected with C. acnes. Perifollicular dermal preadipocytes in human acne and mouse skin lesions showed colocalization of PREF1, an early marker of adipogenesis, and cathelicidin (Camp), an antimicrobial peptide. This capacity of C. acnes to specifically trigger production of cathelicidin in preadipocytes was dependent on TLR2. Treatment of wild-type mice with retinoic acid (RA) suppressed the capacity of C. acnes to form acne-like lesions, inhibited adipogenesis, and enhanced cathelicidin expression in preadipocytes, but lesions were unresponsive in Camp-/- mice, despite the anti-adipogenic action of RA. Analysis of inflamed skin of acne patients after retinoid treatment also showed enhanced induction of cathelicidin, a previously unknown beneficial effect of retinoids in difficult-to-treat acne. Overall, these data provide evidence that adipogenic fibroblasts are a critical component of the pathogenesis of acne and represent a potential target for therapy.


Assuntos
Acne Vulgar , Anti-Infecciosos , Dermatopatias , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Humanos , Camundongos , Propionibacterium acnes/metabolismo , Staphylococcus aureus , Tretinoína/farmacologia
2.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34720087

RESUMO

Inflammatory disorders of the skin are frequently associated with inflammatory bowel diseases (IBDs). To explore mechanisms by which these organs communicate, we performed single-cell RNA-Seq analysis on fibroblasts from humans and mice with IBD. This analysis revealed that intestinal inflammation promoted differentiation of a subset of intestinal stromal fibroblasts into preadipocytes with innate antimicrobial host defense activity. Furthermore, this process of reactive adipogenesis was exacerbated if mouse skin was inflamed as a result of skin wounding or infection. Since hyaluronan (HA) catabolism is activated during skin injury and fibroblast-to-adipocyte differentiation is dependent on HA, we tested the hypothesis that HA fragments could alter colon fibroblast function by targeted expression of human hyaluronidase-1 in basal keratinocytes from mouse skin. Hyaluronidase expression in the skin activated intestinal stromal fibroblasts, altered the fecal microbiome, and promoted excessive reactive adipogenesis and increased inflammation in the colon after challenge with dextran sodium sulfate. The response to digested HA was dependent on expression of TLR4 by preadipocytes. Collectively, these results suggest that the association between skin inflammation and IBD may be due to recognition by mesenchymal fibroblasts in the colon of HA released during inflammation of the skin.


Assuntos
Colite/metabolismo , Fibroblastos/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Pele/metabolismo , Animais , Colite/genética , Colite/patologia , Fibroblastos/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Knockout , Pele/patologia
3.
Sci Immunol ; 6(59)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021025

RESUMO

The skin typically tolerates exposure to various microbes and chemicals in the environment. Here, we investigated how the epidermis maintains this innate immune tolerance to stimuli that are recognized by Toll-like receptors (TLRs). Loss of tolerance to TLR ligands occurred after silencing of the histone deacetylases (HDACs) HDAC8 and HDAC9 in keratinocytes. Transcriptional analysis identified MAP2K3 as suppressed by HDAC8/9 activity and a potential key intermediary for establishing this tolerance. HDAC8/9 influenced acetylation at H3K9 and H3K27 marks in the MAP2K3 promoter. Proteomic analysis further identified SSRP1 and SUPT16H as associated with HDAC8/9 and responsible for transcriptional elongation of MAP2K3. Silencing of MAP2K3 blocked the capacity of HDAC8/9 to influence cytokine responses. Relevance in vivo was supported by observations of increased MAP2K3 in human inflammatory skin conditions and the capacity of keratinocyte HDAC8/9 to influence dendritic cell maturation and T cell proliferation. Keratinocyte-specific deletion of HDAC8/9 also increased inflammation in mice after exposure to ultraviolet radiation, imiquimod, or Staphylococcus aureus These findings define a mechanism for the epidermis to regulate inflammation in the presence of ubiquitous TLR ligands.


Assuntos
Histona Desacetilases/imunologia , MAP Quinase Quinase 3/imunologia , Proteínas Repressoras/imunologia , Pele/imunologia , Animais , Células Cultivadas , Células Dendríticas/imunologia , Epigênese Genética , Histona Desacetilases/genética , Humanos , Imiquimode/farmacologia , Tolerância Imunológica , Imunidade Inata , Queratinócitos/imunologia , MAP Quinase Quinase 3/genética , Camundongos Transgênicos , Proteínas Repressoras/genética , Staphylococcus aureus , Linfócitos T/imunologia , Receptores Toll-Like/imunologia , Raios Ultravioleta
4.
J Immunol ; 203(6): 1589-1597, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31420464

RESUMO

A subset of dermal fibroblasts undergo rapid differentiation into adipocytes in response to infection and acutely produce the cathelicidin antimicrobial peptide gene Camp Vitamin A and other retinoids inhibit adipogenesis yet can show benefit to skin disorders, such as cystic acne, that are exacerbated by bacteria. We observed that retinoids potently increase and sustain the expression of Camp in preadipocytes undergoing adipogenesis despite inhibition of markers of adipogenesis, such as Adipoq, Fabp4, and Rstn Retinoids increase cathelicidin in both mouse and human preadipocytes, but this enhancement of antimicrobial peptide expression did not occur in keratinocytes or a sebocyte cell line. Preadipocytes undergoing adipogenesis more effectively inhibited growth of Staphylococcus aureus when exposed to retinoic acid. Whole transcriptome analysis identified hypoxia-inducible factor 1-α (HIF-1α) as a mechanism through which retinoids mediate this response. These observations uncouple the lipid accumulation element of adipogenesis from the innate immune response and uncover a mechanism, to our knowledge previously unsuspected, that may explain therapeutic benefits of retinoids in some skin disorders.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Derme/efeitos dos fármacos , Retinoides/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Derme/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Pele/efeitos dos fármacos , Pele/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Tretinoína/farmacologia , Catelicidinas
5.
Sci Transl Med ; 11(490)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043573

RESUMO

Colonization of the skin by Staphylococcus aureus is associated with exacerbation of atopic dermatitis (AD), but any direct mechanism through which dysbiosis of the skin microbiome may influence the development of AD is unknown. Here, we show that proteases and phenol-soluble modulin α (PSMα) secreted by S. aureus lead to endogenous epidermal proteolysis and skin barrier damage that promoted inflammation in mice. We further show that clinical isolates of different coagulase-negative staphylococci (CoNS) species residing on normal skin produced autoinducing peptides that inhibited the S. aureus agr system, in turn decreasing PSMα expression. These autoinducing peptides from skin microbiome CoNS species potently suppressed PSMα expression in S. aureus isolates from subjects with AD without inhibiting S. aureus growth. Metagenomic analysis of the AD skin microbiome revealed that the increase in the relative abundance of S. aureus in patients with active AD correlated with a lower CoNS autoinducing peptides to S. aureus ratio, thus overcoming the peptides' capacity to inhibit the S. aureus agr system. Characterization of a S. hominis clinical isolate identified an autoinducing peptide (SYNVCGGYF) as a highly potent inhibitor of S. aureus agr activity, capable of preventing S. aureus-mediated epithelial damage and inflammation on murine skin. Together, these findings show how members of the normal human skin microbiome can contribute to epithelial barrier homeostasis by using quorum sensing to inhibit S. aureus toxin production.


Assuntos
Bactérias/metabolismo , Dermatite Atópica/microbiologia , Epiderme/lesões , Epiderme/microbiologia , Percepção de Quorum , Animais , Toxinas Bacterianas , Coagulase/metabolismo , Homeostase , Humanos , Inflamação/patologia , Queratinócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Peptídeo Hidrolases/metabolismo , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Staphylococcus/fisiologia
6.
PLoS Genet ; 14(3): e1007290, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29584722

RESUMO

PIKfyve, VAC14, and FIG4 form a complex that catalyzes the production of PI(3,5)P2, a signaling lipid implicated in process ranging from lysosome maturation to neurodegeneration. While previous studies have identified VAC14 and FIG4 mutations that lead to both neurodegeneration and coat color defects, how PIKfyve regulates melanogenesis is unknown. In this study, we sought to better understand the role of PIKfyve in melanosome biogenesis. Melanocyte-specific PIKfyve knockout mice exhibit greying of the mouse coat and the accumulation of single membrane vesicle structures in melanocytes resembling multivesicular endosomes. PIKfyve inhibition blocks melanosome maturation, the processing of the melanosome protein PMEL, and the trafficking of the melanosome protein TYRP1. Taken together, these studies identify a novel role for PIKfyve in controlling the delivery of proteins from the endosomal compartment to the melanosome, a role that is distinct from the role of PIKfyve in the reformation of lysosomes from endolysosomes.


Assuntos
Melanossomas/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Flavoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melaninas/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Knockout , Organelas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA