Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 9(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34829922

RESUMO

Periprostatic adipose tissue (PPAT) has emerged as a key player in the prostate cancer (PCa) microenvironment. In this study, we evaluated the ability of PPAT to promote PCa cell migration, as well as the molecular mechanisms involved. METHODS: We collected conditioned mediums from in vitro differentiated adipocytes isolated from PPAT taken from PCa patients during radical prostatectomy. Migration was studied by scratch assay. RESULTS: Culture with CM of human PPAT (AdipoCM) promotes migration in two different human androgen-independent (AI) PCa cell lines (DU145 and PC3) and upregulated the expression of CTGF. SB431542, a well-known TGFß receptor inhibitor, counteracts the increased migration observed in presence of AdipoCM and decreased CTGF expression, suggesting that a paracrine secretion of TGFß by PPAT affects motility of PCa cells. CONCLUSIONS: Collectively, our study showed that factors secreted by PPAT enhanced migration through CTGF upregulation in AI PCa cell lines. These findings reveal the potential of novel therapeutic strategies targeting adipocyte-released factors and TGFß/CTGF axis to fight advanced PCa dissemination.

2.
FASEB J ; 35(11): e21989, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34679197

RESUMO

Aging exacerbates neointimal formation by reducing apoptosis of vascular smooth muscle cells (VSMCs) and induces inflammation within vascular wall. Prep1 is a homeodomain transcription factor which stimulates the expression of proinflammatory cytokines in aortic endothelial cell models and plays a primary role in the regulation of apoptosis. In this study, we have investigated the role of Prep1 in aorta of Prep1 hypomorphic heterozygous mice (Prep1i/+ ) and in VSMCs, and its correlation with aging. Histological analysis from Prep1i/+ aortas revealed a 25% reduction in medial smooth muscle cell density compared to WT animals. This result paralleled higher apoptosis, caspase 3, caspase 9 and p53 levels in Prep1i/+ mice and lower Bcl-xL. Prep1 overexpression in VSMCs decreased apoptosis by 25% and caspase 3 and caspase 9 expression by 40% and 37%. In parallel, Bcl-xL inhibition by BH3I-1 and p53 induction by etoposide reverted the antiapoptotic effect of Prep1. Experiments performed in aorta from 18 months old WT mice showed a significant increase in Prep1, p16INK4 , p21Waf1 and interleukin 6 (IL-6) compared to youngest animals. Similar results have been observed in H2 O2 -induced senescent VSMCs. Interestingly, the synthetic Prep1 inhibitory peptide Prep1 (54-72) reduced the antiapoptotic effects mediated by IL-6, particularly in senescent VSMCs. These results indicate that IL-6-Prep1 signaling reduces apoptosis, by modulating Bcl-xL and p53 both in murine aorta and in VSMCs. In addition, age-dependent increase in IL-6 and Prep1 in senescent VSMCs and in old mice may be involved in the aging-related vascular dysfunction.


Assuntos
Envelhecimento/metabolismo , Proteínas de Homeodomínio/fisiologia , Interleucina-6/fisiologia , Músculo Liso Vascular , Miócitos de Músculo Liso , Animais , Apoptose , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo
3.
Prostate ; 81(7): 407-417, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33734457

RESUMO

Growing evidence supports the pivotal role played by periprostatic adipose tissue (PPAT) in prostate cancer (PCa) microenvironment. We investigated whether PPAT can affect response to Docetaxel (DCTX) and the mechanisms associated. Conditioned medium was collected from the in vitro differentiated adipocytes isolated from PPAT which was isolated from PCa patients, during radical prostatectomy. Drug efficacy was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide citotoxicity assay. Culture with CM of human PPAT (AdipoCM) promotes DCTX resistance in two different human prostate cancer cell lines (DU145 and PC3) and upregulated the expression of BCL-xL, BCL-2, and TUBB2B. AG1024, a well-known IGF-1 receptor inhibitor, counteracts the decreased response to DCTX observed in presence of AdipoCM and decreased TUBB2B expression, suggesting that a paracrine secretion of IGF-1 by PPAT affect DCTX response of PCa cell. Collectively, our study showed that factors secreted by PPAT elicits DCTX resistance through antiapoptotic proteins and TUBB2B upregulation in androgen independent PCa cell lines. These findings reveal the potential of novel therapeutic strategies targeting adipocyte-released factors and IGF-1 axis to overcome DCTX resistance in patients with PCa.


Assuntos
Tecido Adiposo/metabolismo , Antineoplásicos/uso terapêutico , Docetaxel/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Tubulina (Proteína)/metabolismo , Tecido Adiposo/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Fator de Crescimento Insulin-Like I/genética , Masculino , Comunicação Parácrina/fisiologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Tubulina (Proteína)/genética , Regulação para Cima
4.
J Tissue Eng Regen Med ; 14(5): 701-713, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32174023

RESUMO

Diabetic patients display increased risk of periodontitis and failure in bone augmentation procedures. Mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) represent a relevant advantage in tissue repair process and regenerative medicine. We isolated MSCs from Bichat's buccal fat pad (BFP) and measured the effects of glucose and PRP on cell number and osteogenic differentiation potential. Cells were cultured in the presence of 5.5-mM glucose (low glucose [LG]) or 25-mM glucose (high glucose [HG]). BFP-MSC number was significantly lower when cells were cultured in HG compared with those in LG. Following osteogenic differentiation procedures, calcium accumulation, alkaline phosphatase activity, and expression of osteogenic markers were significantly lower in HG compared with LG. Exposure of BFP-MSC to PRP significantly increased cell number and osteogenic differentiation potential, reaching comparable levels in LG and in HG. Thus, high-glucose concentrations impair BFP-MSC growth and osteogenic differentiation. However, these detrimental effects are largely counteracted by PRP.


Assuntos
Tecido Adiposo/metabolismo , Proliferação de Células/efeitos dos fármacos , Glucose , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Plasma Rico em Plaquetas , Adulto , Feminino , Glucose/efeitos adversos , Glucose/farmacologia , Humanos , Masculino
5.
J Mol Endocrinol ; 63(4): 273-283, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31546233

RESUMO

The dramatic rise in obesity and metabolic syndrome can be related, at least in part, to environmental chemical factors such as Bisphenol-A (BPA). In this study, we aimed to understand the effects of low-dose Bisphenol-A on the human mature adipocytes and stromal vascular fraction (SVF) cells, obtained from subcutaneous mammary adipose tissue of overweight female patients, undergoing surgical mammary reduction. 24 and/or 48-h exposure to BPA 0.1 nM elicited significant increase of the inflammatory molecules interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemo-attractant protein 1α (MCP1α) and induced G protein-coupled estrogen receptor 30 (GPR30) levels more than two-fold both in mature adipocytes and SVF cells. These effects were similar to that obtained in the presence of GPR30-specific agonist G1 (100 nM) and were reverted by G15 (1 µM), a GPR30-selective antagonist. As a result of BPA-GPR30 signaling activation, fatty acid synthase (FAS) and leptin mRNA levels were significantly higher upon BPA exposure (P < 0.05) in mature adipocytes, with an opposite effect on adiponectin (ADIPOQ). In addition, an increase in SVF cell proliferation and ERK1/2 phosphorylation, was observed, compared to untreated cells. G15 reverted all of these effects. Interestingly, the action of BPA on SVF cell growth was mimicked by IL-8 treatment and was reverted by incubation with anti-IL8 antibodies. All these data suggest that BPA at 0.1 nM, a ten times lower concentration than environmental exposure, increases the expression of pro-inflammatory cytokines via GPR30 both in mature mammary adipocytes and in SVF cells with a possible involvement of IL-8.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Compostos Benzidrílicos/administração & dosagem , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Fenóis/administração & dosagem , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Receptor fas/genética , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA