Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38535285

RESUMO

The gas transport properties of thin film composite membranes (TFCMs) with selective layers of PolyActive™, polydimethylsiloxane (PDMS), and polyoctylmethylsiloxane (POMS) were investigated over a range of temperatures (10-34 °C; temperature increments of 2 °C) and pressures (1-65 bar abs; 38 pressure increments). The variation in the feed pressure of condensable gases CO2 and C2H6 enabled the observation of peaks of permeance in dependence on the feed pressure and temperature. For PDMS and POMS, the permeance peak was reproduced at the same feed gas activity as when the feed temperature was changed. PolyActive™ TFCM showed a more complex behaviour, most probably due to a higher CO2 affinity towards the poly(ethylene glycol) domains of this block copolymer. A significant decrease in the permeate temperature associated with the Joule-Thomson effect was observed for all TFCMs. The stepwise permeance drop was observed at a feed gas activity of p/po ≥ 1, clearly indicating that a penetrant transfer through the selective layer occurs only according to the conditions on the feed side of the membrane. The permeate side gas temperature has no influence on the state of the selective layer or penetrant diffusing through it. The most likely cause of the observed TFCM behaviour is capillary condensation of the penetrant in the swollen selective layer material, which can be provoked by the clustering of penetrant molecules.

2.
Polymers (Basel) ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335507

RESUMO

Since membranes made of open porous polymer foams can eliminate the use of organic solvents during their manufacturing, a series of previous studies have explored the foaming process of various polymers including polyethersulfone (PESU) using physical blowing agents but failed to produce ultrafiltration membranes. In this study, blends containing different ratios of PESU and poly(N-vinylpyrrolidone) (PVP) were used for preparation of open-celled polymer foams. In batch foaming experiments involving a combination of supercritical CO2 and superheated water as blowing agents, blends with low concentration of PVP delivered uniform open-celled foams that consisted of cells with average cell size less than 20 µm and cell walls containing open pores with average pore size less than 100 nm. A novel sample preparation method was developed to eliminate the non-foamed skin layer and to achieve a high porosity. Flat sheet membranes with an average cell size of 50 nm in the selective layer and average internal pore size of 200 nm were manufactured by batch foaming a PESU blend with higher concentration of PVP and post-treatment with an aqueous solution of sodium hypochlorite. These foams are associated with a water-flux up to 45 L/(h m2 bar). Retention tests confirmed their applicability as ultrafiltration membranes.

3.
Polymers (Basel) ; 15(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616468

RESUMO

Polyethersulfone (PESU), as both a pristine polymer and a component of a blend, can be used to obtain highly porous foams through batch foaming. However, batch foaming is limited to a small scale and is a slow process. In our study, we used foam extrusion due to its capacity for large-scale continuous production and deployed carbon dioxide (CO2) and water as physical foaming agents. PESU is a high-temperature thermoplastic polymer that requires processing temperatures of at least 320 °C. To lower the processing temperature and obtain foams with higher porosity, we produced PESU/poly(ethylene glycol) (PEG) blends using material penetration. In this way, without the use of organic solvents or a compounding extruder, a partially miscible PESU/PEG blend was prepared. The thermal and rheological properties of homopolymers and blends were characterized and the CO2 sorption performance of selected blends was evaluated. By using these blends, we were able to significantly reduce the processing temperature required for the extrusion foaming process by approximately 100 °C without changing the duration of processing. This is a significant advancement that makes this process more energy-efficient and sustainable. Additionally, the effects of blend composition, nozzle temperature and foaming agent type were investigated, and we found that higher concentrations of PEG, lower nozzle temperatures, and a combination of CO2 and water as the foaming agent delivered high porosity. The optimum blend process settings provided foams with a porosity of approximately 51% and an average foam cell diameter of 5 µm, which is the lowest yet reported for extruded polymer foams according to the literature.

4.
Membranes (Basel) ; 11(3)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671054

RESUMO

As a promising material for CO2/N2 separation, PolyActiveTM can be used as a separation layer in thin-film composite membranes (TFCM). Prior studies focused on the modification of PolyActiveTM using low-molecular-weight additives. In this study, the effect of chemical crosslinking of reactive end-groups containing additives, forming networks within selective layers of the TFCM, has been studied. In order to understand the influence of a network embedded into a polymer matrix on the properties of the resulting materials, various characterization methods, including Fourier transform infrared spectroscopy (FTIR), gas transport measurements, differential scanning calorimetry (DSC) and atomic force microscopy (AFM), were used. The characterization of the resulting membrane regarding individual gas permeances by an in-house built "pressure increase" facility revealed a twofold increase in CO2 permeance, with insignificant losses in CO2/N2 selectivity.

5.
Membranes (Basel) ; 9(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717109

RESUMO

Porous, porous/gutter layer and porous/gutter layer/selective layer types of membranes were investigated for their gas transport properties in order to derive an improved description of the transport performance of thin film composite membranes (TFCM). A model describing the individual contributions of the different layers' mass transfer resistances was developed. The proposed method allows for the prediction of permeation behaviour with standard deviations (SD) up to 10%. The porous support structures were described using the Dusty Gas Model (based on the Maxwell⁻Stefan multicomponent mass transfer approach) whilst the permeation in the dense gutter and separation layers was described by applicable models such as the Free-Volume model, using parameters derived from single gas time lag measurements. The model also accounts for the thermal expansion of the dense layers at pressure differences below 100 kPa. Using the model, the thickness of a silicone-based gutter layer was calculated from permeation measurements. The resulting value differed by a maximum of 30 nm to the thickness determined by scanning electron microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA