Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 524: 91-102, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656690

RESUMO

Currently, early detection of lung cancer relies on the characterisation of images generated from computed tomography (CT). However, lung tissue biopsy, a highly invasive surgical procedure, is required to confirm CT-derived diagnostic results with very high false-positive rates. Hence, a non-invasive or minimally invasive biomarkers is essential to complement the existing low-dose CT (LDCT) for early detection, improve responses to a certain treatment, predict cancer recurrence, and to evaluate prognosis. In the past decade, liquid biopsies (e.g., blood) have been demonstrated to be highly effective for lung cancer biomarker discovery. In this review, the roles of emerging liquid biopsy-derived biomarkers such as circulating nucleic acids, circulating tumour cells (CTCs), long non-coding RNA (lncRNA), and microRNA (miRNA), as well as exosomes, have been highlighted. The advantages and limitations of these blood-based minimally invasive biomarkers have been discussed. Furthermore, the current progress of the identified biomarkers for clinical management of lung cancer has been summarised. Finally, a potential strategy for the early detection of lung cancer, using a combination of LDCT scans and well-validated biomarkers, has been discussed.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares/sangue , MicroRNAs/sangue , RNA Longo não Codificante/sangue , Biomarcadores Tumorais/sangue , Humanos , Biópsia Líquida , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico
2.
Cancer Lett ; 521: 252-267, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34508794

RESUMO

Cancer is one of the world's biggest healthcare burdens and despite the current advancements made in treatment plans, the outcomes for oncology patients have yet to reach their full potential. Hence, there is a pressing need to develop novel anti-cancer drugs. A popular drug class for research are natural compounds, due to their multi-targeting potential and enhanced safety profile. One such promising natural bioactive compound derived from a vine, Tripterygium wilfordii is celastrol. Pre-clinical studies revolving around the use of celastrol have revealed positive pharmacological activities in various types of cancers, thus suggesting the chemical's potential anti-cancerous effects. However, despite the numerous preclinical studies carried out over the past few decades, celastrol has not reached human trials for cancer. In this review, we summarize the mechanisms and therapeutic potentials of celastrol in treatment for different types of cancer. Subsequently, we also explore the possible reasons hindering its development for human use as cancer therapy, like its narrow therapeutic window and poor pharmacokinetic properties. Additionally, after critically analysing both in vitro and in vivo evidence, we discuss about the key pathways effected by celastrol and the suitable types of cancer that can be targeted by the natural drug, thus giving insight into future directions that can be taken, such as in-depth analysis and research of the druggability of celastrol derivatives, to aid the clinical translation of this promising anti-cancer lead compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA