Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(18): 5115-5121, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705802

RESUMO

van der Waals (vdW) layered materials have attracted much attention because their physical properties can be controlled by varying the twist angle and layer composition. However, such twisted vdW assemblies are often prepared using mechanically exfoliated monolayer flakes with unintended shapes through a time-consuming search for such materials. Here, we report the rapid and dry fabrication of twisted multilayers using chemical vapor deposition (CVD) grown transition metal chalcogenide (TMDC) monolayers. By improving the adhesion of an acrylic resin stamp to the monolayers, the single crystals of various TMDC monolayers with desired grain size and density on a SiO2/Si substrate can be efficiently picked up. The present dry transfer process demonstrates the one-step fabrication of more than 100 twisted bilayers and the sequential stacking of a twisted 10-layer MoS2 single crystal. Furthermore, we also fabricated hBN-encapsulated TMDC monolayers and various twisted bilayers including MoSe2/MoS2, MoSe2/WSe2, and MoSe2/WS2. The interlayer interaction and quality of dry-transferred, CVD-grown TMDCs were characterized by using photoluminescence (PL), cathodoluminescence (CL) spectroscopy, and cross-sectional electron microscopy. The prominent PL peaks of interlayer excitons can be observed for MoSe2/MoS2 and MoSe2/WSe2 with small twist angles at room temperature. We also found that the optical spectra were locally modulated due to nanosized bubbles, which are formed by the presence of interface carbon impurities. The present findings indicate the widely applicable potential of the present method and enable an efficient search of the emergent optical and electrical properties of TMDC-based vdW heterostructures.

2.
ACS Nano ; 17(7): 6545-6554, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36847351

RESUMO

In-plane heterostructures of transition metal dichalcogenides (TMDCs) have attracted much attention for high-performance electronic and optoelectronic devices. To date, mainly monolayer-based in-plane heterostructures have been prepared by chemical vapor deposition (CVD), and their optical and electrical properties have been investigated. However, the low dielectric properties of monolayers prevent the generation of high concentrations of thermally excited carriers from doped impurities. To solve this issue, multilayer TMDCs are a promising component for various electronic devices due to the availability of degenerate semiconductors. Here, we report the fabrication and transport properties of multilayer TMDC-based in-plane heterostructures. The multilayer in-plane heterostructures are formed through CVD growth of multilayer MoS2 from the edges of mechanically exfoliated multilayer flakes of WSe2 or NbxMo1-xS2. In addition to the in-plane heterostructures, we also confirmed the vertical growth of MoS2 on the exfoliated flakes. For the WSe2/MoS2 sample, an abrupt composition change is confirmed by cross-sectional high-angle annular dark-field scanning transmission electron microscopy. Electrical transport measurements reveal that a tunneling current flows at the NbxMo1-xS2/MoS2 in-plane heterointerface, and the band alignment is changed from a staggered gap to a broken gap by electrostatic electron doping of MoS2. The formation of a staggered gap band alignment of NbxMo1-xS2/MoS2 is also supported by first-principles calculations.

3.
ACS Nano ; 15(10): 15902-15909, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34585910

RESUMO

A comprehensive understanding of the roles of various nanointerfaces in thermal transport is of critical significance but remains challenging. A two-dimensional van der Waals (vdW) heterostructure with tunable interface lattice mismatch provides an ideal platform to explore the correlation between thermal properties and nanointerfaces and achieve controllable tuning of heat flow. Here, we demonstrate that interfacial engineering is an efficient strategy to tune thermal transport via systematic investigation of the thermal conductance (G) across a series of large-area four-layer stacked vdW materials using an improved polyethylene glycol-assisted time-domain thermoreflectance method. Owing to its rich interfacial mismatch and weak interfacial coupling, the vertically stacked MoSe2-MoS2-MoSe2-MoS2 heterostructure demonstrates the lowest G of 1.5 MW m-2 K-1 among all vdW structures. A roadmap to tune G via homointerfacial mismatch, interfacial coupling, and heterointerfacial mismatch is further demonstrated for thermal tuning. Our work reveals the roles of various interfacial effects on heat flow and highlights the importance of the interfacial mismatch and coupling effects in thermal transport. The design principle is also promising for application in other areas, such as the electrical tuning of energy storage and conversion and the thermoelectricity tuning of thermoelectronics.

4.
Adv Sci (Weinh) ; 8(11): e2004438, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34105285

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) with unique electrical properties are fascinating materials used for future electronics. However, the strong Fermi level pinning effect at the interface of TMDCs and metal electrodes always leads to high contact resistance, which seriously hinders their application in 2D electronics. One effective way to overcome this is to use metallic TMDCs or transferred metal electrodes as van der Waals (vdW) contacts. Alternatively, using highly conductive doped TMDCs will have a profound impact on the contact engineering of 2D electronics. Here, a novel chemical vapor deposition (CVD) using mixed molten salts is established for vapor-liquid-solid growth of high-quality rhenium (Re) and vanadium (V) doped TMDC monolayers with high controllability and reproducibility. A tunable semiconductor to metal transition is observed in the Re- and V-doped TMDCs. Electrical conductivity increases up to a factor of 108 in the degenerate V-doped WS2 and WSe2 . Using V-doped WSe2 as vdW contact, the on-state current and on/off ratio of WSe2 -based field-effect transistors have been substantially improved (from ≈10-8 to 10-5 A; ≈104 to 108 ), compared to metal contacts. Future studies on lateral contacts and interconnects using doped TMDCs will pave the way for 2D integrated circuits and flexible electronics.

5.
Nanoscale ; 13(19): 8784-8789, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33928997

RESUMO

To maximize the potential of transition-metal dichalcogenides (TMDCs) in device applications, the development of a sophisticated technique for stable and highly efficient carrier doping is critical. Here, we report the efficient n-type doping of monolayer MoS2 using KOH/benzo-18-crown-6, resulting in a doped TMDC that is air-stable. MoS2 field-effect transistors show an increase in on-current of three orders of magnitude and degenerate the n-type behaviour with high air-stability for ∼1 month as the dopant concentration increases. Transport measurements indicate a high electron density of 3.4 × 1013 cm-2 and metallic-type temperature dependence for highly doped MoS2. First-principles calculations support electron doping via surface charge transfer from the K/benzo-18-crown-6 complex to monolayer MoS2. Patterned doping is demonstrated to improve the contact resistance in MoS2-based devices.

6.
Nano Lett ; 21(1): 243-249, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33307702

RESUMO

The development of bulk synthetic processes to prepare functional nanomaterials is crucial to achieve progress in fundamental and applied science. Transition-metal chalcogenide (TMC) nanowires, which are one-dimensional (1D) structures having three-atom diameters and van der Waals surfaces, have been reported to possess a 1D metallic nature with great potential in electronics and energy devices. However, their mass production remains challenging. Here, a wafer-scale synthesis of highly crystalline transition-metal telluride nanowires is demonstrated by chemical vapor deposition. The present technique enables formation of either aligned, atomically thin two-dimensional (2D) sheets or random networks of three-dimensional (3D) bundles, both composed of individual nanowires. These nanowires exhibit an anisotropic 1D optical response and superior conducting properties. The findings not only shed light on the controlled and large-scale synthesis of conductive thin films but also provide a platform for the study on physics and device applications of nanowire-based 2D and 3D crystals.

7.
ACS Nano ; 14(6): 6663-6672, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32396324

RESUMO

Molecularly thin two-dimensional (2D) semiconductors are emerging as photocatalysts owing to their layer-number-dependent quantum effects and high charge separation efficiency. However, the correlation among the dimensionality, crystallinity, and photocatalytic activity of such 2D nanomaterials remains unclear. Herein, a Ag photoreduction technique coupled with microscopic analyses is employed to spatially resolve the photocatalytic activity of MoS2 as a model catalyst. Interestingly, we find that only monolayer (1L)-MoS2 is active for a Ag photoreduction reaction. The photocatalytic activity of 1L-MoS2 is enhanced by a built-in electrical field originated from the MoS2/SiO2 interface, instead of by the specific surface structure and quantum electronic state of 1L-MoS2. Furthermore, we observe photocatalytic active sites to be geometrically distributed on triangular 1L-MoS2 crystals, wherein the Ag particles are preferentially deposited on the outermost zigzag edges and defective inner parts of the triangular grains. The degradation of photocatalytic activity and electron mobility with the formation of Mo(VI) species indicates that the species inhibit the in-plane diffusion of the photogenerated electrons to the reductive sites. The monolayer-selectivity, activation, and inactivation mechanisms, unveiled in this work, will offer future directions in designing 2D nanophotocatalysts.

8.
Nanoscale ; 11(42): 19700-19704, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31460548

RESUMO

Atomically thin transition-metal dichalcogenides (TMDs) are attracting great interest for future electronic applications. Even though much effort has been devoted to preparing large-area, high-quality TMDs over the past few years, the samples are usually grown on substrate surfaces. Here, we demonstrate the direct growth of a MoS2 monolayer at the interface between a Au film and a SiO2 substrate. MoS2 grains were nucleated below Au films deposited on SiO2via interface diffusion and then grown into a continuous MoS2 film. By programming the Au pattern deposited, controlled growth of MoS2 with the desired size and geometry was achieved over preferred locations, facilitating its integration into functional field-effect transistors. Our findings elucidate the fabrication of a two-dimensional semiconductor at the interface of bulk three-dimensional solids, providing a novel means for establishing a clean interface junction. It also offers a promising alternative to the site-selective synthesis of TMDs, which is expected to aid the fabrication of TMD-based nanodevices.

9.
Nanoscale ; 11(27): 12798-12803, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31173037

RESUMO

This study investigated the intrinsic optical properties of MoS2 monolayers and MoS2/WS2 van der Waals (vdW) heterostructures, grown using chemical vapor deposition. To understand the effect of the growth substrate, samples grown on a SiO2/Si surface were transferred and suspended onto a porous substrate. This transfer resulted in a blue shift of the excitonic photoluminescence (PL) peak generated by MoS2 monolayers, together with an intensity increase. The blue shift and the intensity increase are attributed to the release of lattice strain and the elimination of substrate-induced non-radiative relaxation, respectively. This suspension technique also allowed the observation of PL resulting from interlayer excitons in the MoS2/WS2 vdW heterostructures. These results indicate that the suppression of lattice strain and non-radiative relaxation is essential for the formation of interlayer excitons, which in turn is crucial for understanding the intrinsic physical properties of vdW heterostructures.

10.
Small ; 14(22): e1704559, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29700968

RESUMO

Simple stacking of thin van der Waals 2D materials with different physical properties enables one to create heterojunctions (HJs) with novel functionalities and new potential applications. Here, a 2D material p-n HJ of GeSe/MoS2 is fabricated and its vertical and horizontal carrier transport and photoresponse properties are studied. Substantial rectification with a very high contrast (>104 ) through the potential barrier in the vertical-direction tunneling of HJs is observed. The negative differential transconductance with high peak-to-valley ratio (>105 ) due to the series resistance change of GeSe, MoS2 , and HJs at different gate voltages is observed. Moreover, strong and broad-band photoresponse via the photoconductive effect are also demonstrated. The explored multifunctional properties of the GeSe/MoS2 HJs are expected to be important for understanding the carrier transport and photoresponse of 2D-material HJs for achieving their use in various new applications in the electronics and optoelectronics fields.

11.
ACS Nano ; 9(5): 5034-40, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25868574

RESUMO

Nanotemplated growth of graphene nanoribbons (GNRs) inside carbon nanotubes is a promising mean to fabricate ultrathin ribbons with desired side edge configuration. We report the optical properties of the GNRs formed in single-wall carbon nanotubes. When coronene is used as the precursor, extended GNRs are grown via a high-temperature annealing at 700 °C. Their optical responses are probed through the diazonium-based side-wall functionalization, which effectively suppresses the excitonic absorption peaks of the nanotubes without damaging the inner GNRs. Differential absorption spectra clearly show two distinct peaks around 1.5 and 3.4 eV. These peaks are assigned to the optical transitions between the van Hove singularities in the density of state of the GNRs in qualitative agreement with the first-principles calculations. Resonance Raman spectra and transmission electron microscope observations also support the formation of long GNRs.

12.
Nat Commun ; 4: 2548, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24091379

RESUMO

Carbon nanotubes have long been described as rolled-up graphene sheets. It is only fairly recently observed that longitudinal cleavage of carbon nanotubes, using chemical, catalytical and electrical approaches, unzips them into thin graphene strips of various widths, the so-called graphene nanoribbons. In contrast, rolling up these flimsy ribbons into tubes in a real experiment has not been possible. Theoretical studies conducted by Kit et al. recently demonstrated the tube formation through twisting of graphene nanoribbon, an idea very different from the rolling-up postulation. Here we report the first experimental evidence of a thermally induced self-intertwining of graphene nanoribbons for the preferential synthesis of (7, 2) and (8, 1) tubes within parent-tube templates. Through the tailoring of ribbon's width and edge, the present finding adds a radically new aspect to the understanding of carbon nanotube formation, shedding much light on not only the future chirality tuning, but also contemporary nanomaterials engineering.

13.
Chem Commun (Camb) ; 47(37): 10368-70, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21847468

RESUMO

We have developed a two-step filling process for the nano-reaction of ionic liquid in a tip-closed SWNT, where fullerenes are inserted at the end of the host SWNT as a plug to prevent the leakage of the confined ionic liquid during heat treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA