Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hematol Oncol ; 17(1): 45, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886748

RESUMO

BACKGROUND: p53, the most frequently mutated gene in cancer, lacks effective targeted drugs. METHODS: We developed monoclonal antibodies (mAbs) that target a p53 hotspot mutation E285K without cross-reactivity with wild-type p53. They were delivered using lipid nanoparticles (LNPs) that encapsulate DNA plasmids. Western blot, BLI, flow cytometry, single-cell sequencing (scRNA-seq), and other methods were employed to assess the function of mAbs in vitro and in vivo. RESULTS: These LNP-pE285K-mAbs in the IgG1 format exhibited a robust anti-tumor effect, facilitating the infiltration of immune cells, including CD8+ T, B, and NK cells. scRNA-seq revealed that IgG1 reduces immune inhibitory signaling, increases MHC signaling from B cells to CD8+ T cells, and enriches anti-tumor T cell and B cell receptor profiles. The E285K-mAbs were also produced in the dimeric IgA (dIgA) format, whose anti-tumor activity depended on the polymeric immunoglobulin receptor (PIGR), a membrane Ig receptor, whereas that of IgG1 relied on TRIM21, an intracellular IgG receptor. CONCLUSIONS: Targeting specific mutant epitopes using DNA-encoded and LNP-delivered mAbs represents a potential precision medicine strategy against p53 mutants in TRIM21- or PIGR-positive cancers.


Assuntos
Anticorpos Monoclonais , Mutação , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/imunologia , Proteína Supressora de Tumor p53/genética , Animais , Humanos , Camundongos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Linfócitos T CD8-Positivos/imunologia , Nanopartículas/química , Linhagem Celular Tumoral
2.
Front Immunol ; 15: 1332939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361919

RESUMO

Vaccines have proven effective in the treatment and prevention of numerous diseases. However, traditional attenuated and inactivated vaccines suffer from certain drawbacks such as complex preparation, limited efficacy, potential risks and others. These limitations restrict their widespread use, especially in the face of an increasingly diverse range of diseases. With the ongoing advancements in genetic engineering vaccines, DNA vaccines have emerged as a highly promising approach in the treatment of both genetic diseases and acquired diseases. While several DNA vaccines have demonstrated substantial success in animal models of diseases, certain challenges need to be addressed before application in human subjects. The primary obstacle lies in the absence of an optimal delivery system, which significantly hampers the immunogenicity of DNA vaccines. We conduct a comprehensive analysis of the current status and limitations of DNA vaccines by focusing on both viral and non-viral DNA delivery systems, as they play crucial roles in the exploration of novel DNA vaccines. We provide an evaluation of their strengths and weaknesses based on our critical assessment. Additionally, the review summarizes the most recent advancements and breakthroughs in pre-clinical and clinical studies, highlighting the need for further clinical trials in this rapidly evolving field.


Assuntos
Vacinas de DNA , Animais , Humanos , Sistemas de Liberação de Medicamentos , Modelos Animais
3.
BJC Rep ; 22024.
Artigo em Inglês | MEDLINE | ID: mdl-38312352

RESUMO

BACKGROUND/OBJECTIVES: Checkpoint inhibitors, which generate durable responses in many cancer patients, have revolutionized cancer immunotherapy. However, their therapeutic efficacy is limited, and immune-related adverse events are severe, especially for monoclonal antibody treatment directed against cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), which plays a pivotal role in preventing autoimmunity and fostering anticancer immunity by interacting with the B7 proteins CD80 and CD86. Small molecules impairing the CTLA-4/CD80 interaction have been developed; however, they directly target CD80, not CTLA-4. SUBJECTS/METHODS: In this study, we performed artificial intelligence (AI)-powered virtual screening of approximately ten million compounds to identify those targeting CTLA-4. We validated the hits molecules with biochemical, biophysical, immunological, and experimental animal assays. RESULTS: The primary hits obtained from the virtual screening were successfully validated in vitro and in vivo. We then optimized lead compounds and obtained inhibitors (inhibitory concentration, 1 micromole) that disrupted the CTLA-4/CD80 interaction without degrading CTLA-4. CONCLUSIONS: Several compounds inhibited tumor development prophylactically and therapeutically in syngeneic and CTLA-4-humanized mice. Our findings support using AI-based frameworks to design small molecules targeting immune checkpoints for cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA