RESUMO
Uncovering the regulators of cellular aging will unravel the complexity of aging biology and identify potential therapeutic interventions to delay the onset and progress of chronic, aging-related diseases. In this work, we systematically compared genesets involved in regulating the lifespan of Saccharomyces cerevisiae (a powerful model organism to study the cellular aging of humans) and those with expression changes under rapamycin treatment. Among the functionally uncharacterized genes in the overlap set, YBR238C stood out as the only one downregulated by rapamycin and with an increased chronological and replicative lifespan upon deletion. We show that YBR238C and its paralog RMD9 oppositely affect mitochondria and aging. YBR238C deletion increases the cellular lifespan by enhancing mitochondrial function. Its overexpression accelerates cellular aging via mitochondrial dysfunction. We find that the phenotypic effect of YBR238C is largely explained by HAP4- and RMD9-dependent mechanisms. Furthermore, we find that genetic- or chemical-based induction of mitochondrial dysfunction increases TORC1 (Target of Rapamycin Complex 1) activity that, subsequently, accelerates cellular aging. Notably, TORC1 inhibition by rapamycin (or deletion of YBR238C) improves the shortened lifespan under these mitochondrial dysfunction conditions in yeast and human cells. The growth of mutant cells (a proxy of TORC1 activity) with enhanced mitochondrial function is sensitive to rapamycin whereas the growth of defective mitochondrial mutants is largely resistant to rapamycin compared to wild type. Our findings demonstrate a feedback loop between TORC1 and mitochondria (the TORC1-MItochondria-TORC1 (TOMITO) signaling process) that regulates cellular aging processes. Hereby, YBR238C is an effector of TORC1 modulating mitochondrial function.
Assuntos
Senescência Celular , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transdução de Sinais , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimo/farmacologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
During the last few decades, the study of microbial ecology has been enabled by molecular and genomic data. DNA sequencing has revealed the surprising extent of microbial diversity and how microbial processes run global ecosystems. However, significant gaps in our understanding of the microbial world remain, and one example is that microbial eukaryotes, or protists, are still largely neglected. To address this gap, we used gene expression data from 17 protist species to create protist.guru: an online database equipped with tools for identifying co-expressed genes, gene families, and co-expression clusters enriched for specific biological functions. Here, we show how our database can be used to reveal genes involved in essential pathways, such as the synthesis of secondary carotenoids in Haematococcus lacustris. We expect protist.guru to serve as a valuable resource for protistologists, as well as a catalyst for discoveries and new insights into the biological processes of microbial eukaryotes. AVAILABILITY: The database and co-expression networks are freely available from http://protist.guru/. The expression matrices and sample annotations are found in the supplementary data.
Assuntos
Bases de Dados Genéticas , Eucariotos , Transcriptoma , Eucariotos/genética , Perfilação da Expressão Gênica , Análise de Sequência de DNA , Transcriptoma/genéticaRESUMO
The fungi kingdom is composed of eukaryotic heterotrophs, which are responsible for balancing the ecosystem and play a major role as decomposers. They also produce a vast diversity of secondary metabolites, which have antibiotic or pharmacological properties. However, our lack of knowledge of gene function in fungi precludes us from tailoring them to our needs and tapping into their metabolic diversity. To help remedy this, we gathered genomic and gene expression data of 19 most widely-researched fungi to build an online tool, fungi.guru, which contains tools for cross-species identification of conserved pathways, functional gene modules, and gene families. We exemplify how our tool can elucidate the molecular function, biological process and cellular component of genes involved in various biological processes, by identifying a secondary metabolite pathway producing gliotoxin in Aspergillus fumigatus, the catabolic pathway of cellulose in Coprinopsis cinerea and the conserved DNA replication pathway in Fusarium graminearum and Pyricularia oryzae. The tool is available at www.fungi.guru.