Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Microbiol ; 62(1): 21-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180730

RESUMO

It was reported that LAMMER kinase in Schizosaccharomyces pombe plays an important role in cation-dependent and galactose-specific flocculation. Analogous to other flocculating yeasts, when cell wall extracts of the Δlkh1 strain were treated to the wild-type strain, it displayed flocculation. Gas2, a 1,3-ß-glucanosyl transferase, was isolated from the EDTA-extracted cell-surface proteins in the Δlkh1 strain. While disruption of the gas2+ gene was not lethal and reduced the flocculation activity of the ∆lkh1 strain, the expression of a secreted form of Gas2, in which the GPI anchor addition sequences had been removed, conferred the ability to flocculate upon the WT strain. The Gas2-mediated flocculation was strongly inhibited by galactose but not by glucose. Immunostaining analysis showed that the cell surface localization of Gas2 was crucial for the flocculation of fission yeast. In addition, we identified the regulation of mbx2+ expression by Lkh1 using RT-qPCR. Taken together, we found that Lkh1 induces asexual flocculation by regulating not only the localization of Gas2 but also the transcription of gas2+ through Mbx2.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Galactose/metabolismo , Galactose/farmacologia , Floculação , Proteínas Quinases/genética
2.
Mycobiology ; 51(5): 372-378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929004

RESUMO

Lkh1, a LAMMER kinase homolog in the fission yeast Schizosaccharomyces pombe, acts as a negative regulator of filamentous growth and flocculation. It is also involved in the response to oxidative stress. The lkh1-deletion mutant displays slower cell growth, shorter cell size, and abnormal DNA content compared to the wild type. These phenotypes suggest that Lkh1 controls cell size and cell cycle progression. When we performed microarray analysis using the lkh1-deletion mutant, we found that only four of the up-regulated genes in the lkh1-deletion were associated with the cell cycle. Interestingly, all of these genes are regulated by the Mlu1 cell cycle box binding factor (MBF), which is a transcription complex responsible for regulating the expression of cell cycle genes during the G1/S phase. Transcription analyses of the MBF-dependent cell-cycle genes, including negative feedback regulators, confirmed the up-regulation of these genes by the deletion of lkh1. Pull-down assay confirmed the interaction between Lkh1 and Yox1, which is a negative feedback regulator of MBF. This result supports the involvement of LAMMER kinase in cell cycle regulation by modulating MBF activity. In vitro kinase assay and NetPhosK 2.0 analysis with the Yox1T40,41A mutant allele revealed that T40 and T41 residues are the phosphorylation sites mediated by Lkh1. These sites affect the G1/S cell cycle progression of fission yeast by modulating the activity of the MBF complex.

3.
Front Immunol ; 14: 1244586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724101

RESUMO

Adiponectin is an insulin sensitizing hormone that also plays a role in the regulation of inflammation. Although adiponectin can exert pro-inflammatory effects, more studies have reported anti-inflammatory effects, even in non-adipose tissues such as the lung. Obesity is considered an inflammatory disease, is a risk factor for lung diseases, and is associated with decreased levels of plasma adiponectin. The results of recent studies have suggested that adiponectin exerts anti-inflammatory activity in chronic obstructive pulmonary disease, asthma and invasive fungal infection. The signaling receptors of adiponectin, AdipoR1 and AdipoR2, are expressed by epithelial cells, endothelial cells, and immune cells in the lung. In this mini-review, we discuss the anti-inflammatory mechanisms of adiponectin in lung cells and tissues.


Assuntos
Asma , Pneumonia , Humanos , Adiponectina , Células Endoteliais , Inflamação
5.
Exp Mol Med ; 55(5): 974-986, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121972

RESUMO

The mesenchymal cancer phenotype is known to be clinically related to treatment resistance and a poor prognosis. We identified gene signature-based molecular subtypes of gastric cancer (GC, n = 547) based on transcriptome data and validated their prognostic and predictive utility in multiple external cohorts. We subsequently examined their associations with tumor microenvironment (TME) features by employing cellular deconvolution methods and sequencing isolated GC populations. We further performed spatial transcriptomics analysis and immunohistochemistry, demonstrating the presence of GC cells in a partial epithelial-mesenchymal transition state. We performed network and pharmacogenomic database analyses to identify TGF-ß signaling as a driver pathway and, thus, a therapeutic target. We further validated its expression in tumor cells in preclinical models and a single-cell dataset. Finally, we demonstrated that inhibition of TGF-ß signaling negated mesenchymal/stem-like behavior and therapy resistance in GC cell lines and mouse xenograft models. In summary, we show that the mesenchymal GC phenotype could be driven by epithelial cancer cell-intrinsic TGF-ß signaling and propose therapeutic strategies based on targeting the tumor-intrinsic mesenchymal reprogramming of medically intractable GC.


Assuntos
Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/patologia , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Transcriptoma , Modelos Animais de Doenças , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética
6.
J Fungi (Basel) ; 9(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36836258

RESUMO

Survival factor A (SvfA) in Aspergillus nidulans plays multiple roles in growth and developmental processes. It is a candidate for a novel VeA-dependent protein involved in sexual development. VeA is a key developmental regulator in Aspergillus species that can interact with other velvet-family proteins and enter into the nucleus to function as a transcription factor. In yeast and fungi, SvfA-homologous proteins are required for survival under oxidative and cold-stress conditions. To assess the role of SvfA in virulence in A. nidulans, cell wall components, biofilm formation, and protease activity were evaluated in a svfA-gene-deletion or an AfsvfA-overexpressing strain. The svfA-deletion strain showed decreased production of ß-1,3-glucan in conidia, a cell wall pathogen-associated molecular pattern, with a decrease in gene expression for chitin synthases and ß-1,3-glucan synthase. The ability to form biofilms and produce proteases was reduced in the svfA-deletion strain. We hypothesized that the svfA-deletion strain was less virulent than the wild-type strain; therefore, we performed in vitro phagocytosis assays using alveolar macrophages and analyzed in vivo survival using two vertebrate animal models. While phagocytosis was reduced in mouse alveolar macrophages challenged with conidia from the svfA-deletion strain, the killing rate showed a significant increase with increased extracellular signal-regulated kinase ERK activation. The svfA-deletion conidia infection reduced host mortality in both T-cell-deficient zebrafish and chronic granulomatous disease mouse models. Taken together, these results indicate that SvfA plays a significant role in the pathogenicity of A. nidulans.

7.
J Fungi (Basel) ; 8(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35049996

RESUMO

G-protein signaling is important for signal transduction, allowing various stimuli that are external to a cell to affect its internal molecules. In Aspergillus fumigatus, the roles of Gß-like protein CpcB on growth, asexual development, drug sensitivity, and virulence in a mouse model have been previously reported. To gain a deeper insight into Aspergillus fumigatus sexual development, the ΔAfcpcB strain was generated using the supermater AFB62 strain and crossed with AFIR928. This cross yields a decreased number of cleistothecia, including few ascospores. The sexual reproductive organ-specific transcriptional analysis using RNAs from the cleistothecia (sexual fruiting bodies) indicated that the CpcB is essential for the completion of sexual development by regulating the transcription of sexual genes, such as veA, steA, and vosA. The ΔAfcpcB strain revealed increased resistance to oxidative stress by regulating genes for catalase, peroxiredoxin, and ergosterol biosynthesis. The ΔAfcpcB strain showed decreased uptake by alveolar macrophages in vitro, decreased sensitivity to Congo red, decreased expression of cell wall genes, and increased expression of the hydrophobin genes. Taken together, these findings indicate that AfCpcB plays important roles in sexual development, phagocytosis by alveolar macrophages, biosynthesis of the cell wall, and oxidative stress response.

8.
Front Cell Infect Microbiol ; 11: 756206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722342

RESUMO

The LAMMER kinase in eukaryotes is a well-conserved dual-specificity kinase. Aspergillus species cause a wide spectrum of diseases called aspergillosis in humans, depending on the underlying immune status of the host, such as allergy, aspergilloma, and invasive aspergillosis. Aspergillus fumigatus is the most common opportunistic fungal pathogen that causes invasive aspergillosis. Although LAMMER kinase has various functions in morphology, development, and cell cycle regulation in yeast and filamentous fungi, its function in A. fumigatus is not known. We performed molecular studies on the function of the A. fumigatus LAMMER kinase, AfLkhA, and reported its involvement in multiple cellular processes, including development and virulence. Deletion of AflkhA resulted in defects in colonial growth, production of conidia, and sexual development. Transcription and genetic analyses indicated that AfLkhA modulates the expression of key developmental regulatory genes. The AflkhA-deletion strain showed increased production of gliotoxins and protease activity. When conidia were challenged with alveolar macrophages, enodocytosis of conidia by macrophages was increased in the AflkhA-deletion strain, resulting from changes in expression of the cell wall genes and thus content of cell wall pathogen-associated molecular patterns, including ß-1,3-glucan and GM. While T cell-deficient zebrafish larvae were significantly susceptible to wild-type A. fumigatus infection, AflkhA-deletion conidia infection reduced host mortality. A. fumigatus AfLkhA is required for the establishment of virulence factors, including conidial production, mycotoxin synthesis, protease activity, and interaction with macrophages, which ultimately affect pathogenicity at the organismal level.


Assuntos
Aspergillus fumigatus , Moléculas com Motivos Associados a Patógenos , Animais , Aspergillus fumigatus/genética , Parede Celular , Proteínas Fúngicas/genética , Humanos , Reprodução , Esporos Fúngicos , Virulência , Peixe-Zebra
9.
Curr Genet ; 67(4): 613-630, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33683401

RESUMO

Aspergillus nidulans produces cleistothecia as sexual reproductive organs in a process affected by genetic and external factors. To gain a deeper insight into A. nidulans sexual development, we performed comparative proteome analyses based on the wild type developmental periods. We identified sexual development-specific proteins with a more than twofold increase in production during hypoxia or the sexual period compared to the asexual period. Among the sexual development-specific proteins analyzed by gene-deletion experiments and functional assays, MpdA, a putative mannitol-1-phosphate 5-dehydrogenase, plays multiple roles in growth and differentiation of A. nidulans. The most distinct mpdA-deletion phenotype was ascosporogenesis failure. Genetic mpdA deletion resulted in small cleistothecia with no functional ascospores. Transcriptional analyses indicated that MpdA modulates the expression of key development- and meiosis-regulatory genes during sexual development. The mpdA deletion increased hyphal branching and decreased conidial heat resistance. Mannitol production in conidia showed no difference, whereas it was decreased in mycelia and sexual cultures. Addition of mannitol during vegetative growth recovered the defects in conidial heat resistance and ascospore genesis. Taken together, these results indicate that MpdA plays an important role in sexual development, hyphal branching, and conidial heat resistance in Aspergillus nidulans.


Assuntos
Aspergillus nidulans/genética , Hifas/genética , Esporos Fúngicos/genética , Desidrogenase do Álcool de Açúcar/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/patogenicidade , Regulação Fúngica da Expressão Gênica/genética , Hifas/crescimento & desenvolvimento , Manitol/metabolismo , Meiose/genética , Desenvolvimento Sexual/genética , Esporos Fúngicos/metabolismo
11.
Nat Biomed Eng ; 5(1): 114-123, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288878

RESUMO

In many cancers, tumour progression is associated with increased tissue stiffness. Yet, the mechanisms associating tissue stiffness with tumorigenesis and malignant transformation are unclear. Here we show that in gastric cancer cells, the stiffness of the extracellular matrix reversibly regulates the DNA methylation of the promoter region of the mechanosensitive Yes-associated protein (YAP). Reciprocal interactions between YAP and the DNA methylation inhibitors GRHL2, TET2 and KMT2A can cause hypomethylation of the YAP promoter and stiffness-induced oncogenic activation of YAP. Direct alteration of extracellular cues via in situ matrix softening reversed YAP activity and the epigenetic program. Our findings suggest that epigenetic reprogramming of the mechanophysical properties of the extracellular microenvironment of solid tumours may represent a therapeutic strategy for the inhibition of cancer progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinogênese , Metilação de DNA , Matriz Extracelular , Neoplasias Gástricas , Fatores de Transcrição , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/fisiopatologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia , Proteínas de Sinalização YAP
12.
Sci Rep ; 10(1): 5586, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221392

RESUMO

The first member of the velvet family of proteins, VeA, regulates sexual development and secondary metabolism in the filamentous fungus Aspergillus nidulans. In our study, through comparative proteome analysis using wild type and veA-deletion strains, new putative regulators of sexual development were identified and functionally analyzed. Among these, SvfA, containing a yeast survival factor 1 domain, plays multiple roles in the growth and differentiation of A. nidulans. Deletion of the svfA gene resulted in increased sensitivity to oxidative and cold stress as in yeast. The svfA-deletion strain showed an increase in bi-polar germination and a decrease in radial growth rate. The deletion strain formed structurally abnormal conidiophores and thus produced lower amounts of conidiospores during asexual development. The svfA-deletion strain produced few Hülle cells and small cleistothecia with no ascospores, indicating the requirement of svfA for the completion of sexual development. Transcription and genetic analyses indicated that SvfA modulates the expression of key development regulatory genes. Western blot analysis revealed two forms of SvfA. The larger form showed sexual-specific and VeA-dependent production. Also, the deletion of svfA caused decreased ST (sterigmatocystin) production. We propose that SvfA is a novel central regulator of growth, differentiation and secondary metabolism in A. nidulans.


Assuntos
Aspergillus nidulans/crescimento & desenvolvimento , Proteínas Fúngicas/fisiologia , Aspergillus nidulans/genética , Western Blotting , Regulação Fúngica da Expressão Gênica/genética , Reprodução , Esporos Fúngicos/crescimento & desenvolvimento
13.
Med Mycol ; 58(2): 240-247, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100152

RESUMO

Dual specificity LAMMER kinase has been reported to be conserved across species ranging from yeasts to animals and has multiple functions. Candida albicans undergoes dimorphic switching between yeast cells and hyphal growth forms as its key virulence factors. Deletion of KNS1, which encodes for LAMMER kinase in C. albicans, led to pseudohyphal growth on YPD media and defects in filamentous growth both on spider and YPD solid media containing 10% serum. These cells exhibited expanded central wrinkled regions and specifically reduced peripheral filaments. Among the several stresses tested, the kns1Δ strains showed sensitivity to cell-wall and DNA-replicative stress. Under fluorescent microscopy, an increase in chitin decomposition was observed near the bud necks and septa in kns1Δ cells. When the expression levels of genes for cell wall integrity (CWI) and the DNA repair mechanism were tested, the kns1 double-deletion cells showed abnormal patterns compared to wild-type cells; The transcript levels of genes for glycosylphosphatidylinositol (GPI)-anchored proteins were increased upon calcofluor white (CFW) treatment. Under DNA replicative stress, the expression of MluI-cell cycle box binding factor (MBF)-targeted genes, which are expressed during the G1/S transition in the cell cycle, was not increased in the kns1 double-deletion cells. This strain showed increased adhesion to the surface of an agar plate and zebrafish embryo. These results demonstrate that Kns1 is involved in dimorphic transition, cell wall integrity, response to DNA replicative stress, and adherence to the host cell surface in C. albicans.


Assuntos
Candida albicans/enzimologia , Candida albicans/fisiologia , Dano ao DNA , Proteínas Fúngicas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Benzenossulfonatos/farmacologia , Candida albicans/efeitos dos fármacos , Ciclo Celular , Parede Celular/fisiologia , DNA Fúngico , Deleção de Genes , Hifas/crescimento & desenvolvimento , Estresse Fisiológico
14.
Artigo em Inglês | MEDLINE | ID: mdl-31275866

RESUMO

The morphological plasticity of fungal pathogens has long been implicated in their virulence and is often influenced by extracellular factors. Complex signal transduction cascades are critical for sensing stresses imposed by external cues such as antifungal drugs, and for mediating appropriate cellular responses. Many of these signal transduction cascades are well-conserved and involve in the distinct morphogenetic processes during the life cycle of the pathogenic fungi. The dual-specificity LAMMER kinases are evolutionarily conserved across species ranging from yeasts to mammals and have multiple functions in various physiological processes; however, their functions in fungi are relatively unknown. In this review, we first describe the involvement of LAMMER kinases in cell surface changes, which often accompany alterations in growth pattern and differentiation. Then, we focus on the LAMMER kinase-dependent molecular machinery responsible for the stress responses and cell cycle regulation. Last, we discuss the possible cross-talk between LAMMER kinases and other signaling cascades, which integrates exogenous and host signals together with genetic factors to affect the morphological plasticity and virulence in fungi.


Assuntos
Adaptação Fisiológica/fisiologia , Fungos/fisiologia , Morfogênese/fisiologia , Proteínas Quinases/metabolismo , Antifúngicos , Ciclo Celular , Parede Celular/metabolismo , Fungos/genética , Fungos/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Transdução de Sinais , Estresse Fisiológico , Virulência
15.
J Microbiol ; 57(8): 688-693, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31079330

RESUMO

There are presently no studies on the genes for sexual development of Aspergillus fumigatus in situ using mating culture, primarily because of challenging experimental conditions that require a significantly long period of induction and produce developmentally heterogenous culture, harboring very few sexual organs. In order to overcome these challenges, we developed an efficient and convenient procedure called 'vegetative mass mating (VeM)' for study at a molecular level. The VeM method enabled production of a developmentally homogenous A. fumigatus culture, harboring many sexual organs in a plate within a short period of two weeks. Feasibility of the use of VeM for functional study of genes during A. fumigatus sexual development was evaluated by analyzing the transcription pattern of genes involved in pheromone signal transduction and regulation of sexual development. Here, we present for the first time, an in situ expression pattern of sexual genes during the mating process, induced by the VeM method, which will enable and promote the sexual development study of A. fumigatus at the molecular level.


Assuntos
Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Expressão Gênica , Perfilação da Expressão Gênica , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA