Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 83(20): 3414-3427, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37463241

RESUMO

Multiple myeloma cells undergo metabolic reprogramming in response to the hypoxic and nutrient-deprived bone marrow microenvironment. Primary oncogenes in recurrent translocations might be able to drive metabolic heterogeneity to survive the microenvironment that can present new vulnerabilities for therapeutic targeting. t(4;14) translocation leads to the universal overexpression of histone methyltransferase NSD2 that promotes plasma cell transformation through a global increase in H3K36me2. Here, we identified PKCα as an epigenetic target that contributes to the oncogenic potential of NSD2. RNA sequencing of t(4;14) multiple myeloma cell lines revealed a significant enrichment in the regulation of metabolic processes by PKCα, and the glycolytic gene, hexokinase 2 (HK2), was transcriptionally regulated by PKCα in a PI3K/Akt-dependent manner. Loss of PKCα displaced mitochondria-bound HK2 and reversed sensitivity to the glycolytic inhibitor 3-bromopyruvate. In addition, the perturbation of glycolytic flux led to a metabolic shift to a less energetic state and decreased ATP production. Metabolomics analysis indicated lactate as a differential metabolite associated with PKCα. As a result, PKCα conferred resistance to the immunomodulatory drugs (IMiD) lenalidomide in a cereblon-independent manner and could be phenocopied by either overexpression of HK2 or direct supplementation of lactate. Clinically, t(4;14) patients had elevated plasma lactate levels and did not benefit from lenalidomide-based regimens. Altogether, this study provides insights into the epigenetic-metabolism cross-talk in multiple myeloma and highlights the opportunity for therapeutic intervention that leverages the distinct metabolic program in t(4;14) myeloma. SIGNIFICANCE: Aberrant glycolysis driven by NSD2-mediated upregulation of PKCα can be therapeutically exploited using metabolic inhibitors with lactate as a biomarker to identify high-risk patients who exhibit poor response towards IMiD-based regimens.


Assuntos
Mieloma Múltiplo , Humanos , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Lactatos/uso terapêutico , Lenalidomida/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Fosfatidilinositol 3-Quinases , Proteína Quinase C-alfa/genética , Microambiente Tumoral
2.
Cancers (Basel) ; 14(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35454812

RESUMO

Multiple myeloma (MM) remains an incurable malignancy with eventual emergence of refractory disease. Metabolic shifts, which ensure the availability of sufficient energy to support hyperproliferation of malignant cells, are a hallmark of cancer. Deregulated metabolic pathways have implications for the tumor microenvironment, immune cell function, prognostic significance in MM and anti-myeloma drug resistance. Herein, we summarize recent findings on metabolic abnormalities in MM and clinical implications driven by metabolism that may consequently inspire novel therapeutic interventions. We highlight some future perspectives on metabolism in MM and propose potential targets that might revolutionize the field.

3.
Cancer Res ; 82(3): 406-418, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893510

RESUMO

Multiple myeloma is an incurable malignancy with marked clinical and genetic heterogeneity. The cytogenetic abnormality t(4;14) (p16.3;q32.3) confers aggressive behavior in multiple myeloma. Recently, essential oncogenic drivers in a wide range of cancers have been shown to be controlled by super-enhancers (SE). We used chromatin immunoprecipitation sequencing of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs in t(4;14)-translocated multiple myeloma. The histone chaperone HJURP was aberrantly overexpressed in t(4;14)-positive multiple myeloma due to transcriptional activation by a distal SE induced by the histone lysine methyltransferase NSD2. Silencing of HJURP with short hairpin RNA or CRISPR interference of SE function impaired cell viability and led to apoptosis. Conversely, HJURP overexpression promoted cell proliferation and abrogated apoptosis. Mechanistically, the NSD2/BRD4 complex positively coregulated HJURP transcription by binding the promoter and active elements of its SE. In summary, this study introduces SE profiling as an efficient approach to identify new targets and understand molecular pathogenesis in specific subtypes of cancer. Moreover, HJURP could be a valuable therapeutic target in patients with t(4;14)-positive myeloma. SIGNIFICANCE: A super-enhancer screen in t(4;14) multiple myeloma serves to identify genes that promote growth and survival of myeloma cells, which may be evaluated in future studies as therapeutic targets.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mieloma Múltiplo/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Regulação para Cima
4.
Cancer Res ; 81(9): 2332-2344, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33602783

RESUMO

NSD2 is the primary oncogenic driver in t(4;14) multiple myeloma. Using SILAC-based mass spectrometry, we demonstrate a novel role of NSD2 in chromatin remodeling through its interaction with the SWI/SNF ATPase subunit SMARCA2. SMARCA2 was primarily expressed in t(4;14) myeloma cells, and its interaction with NSD2 was noncanonical and independent of the SWI/SNF complex. RNA sequencing identified PTP4A3 as a downstream target of NSD2 and mapped NSD2-SMARCA2 complex on PTP4A3 promoter. This led to a focal increase in the permissive H3K36me2 mark and transcriptional activation of PTP4A3. High levels of PTP4A3 maintained MYC expression and correlated with a 54-gene MYC signature in t(4;14) multiple myeloma. Importantly, this mechanism was druggable by targeting the bromodomain of SMARCA2 using the specific BET inhibitor PFI-3, leading to the displacement of NSD2 from PTP4A3 promoter and inhibiting t(4;14) myeloma cell viability. In vivo, treatment with PFI-3 reduced the growth of t(4;14) xenograft tumors. Together, our study reveals an interplay between histone-modifying enzymes and chromatin remodelers in the regulation of myeloma-specific genes that can be clinically intervened. SIGNIFICANCE: This study uncovers a novel, SWI/SNF-independent interaction between SMARCA2 and NSD2 that facilitates chromatin remodeling and transcriptional regulation of oncogenes in t(4;14) multiple myeloma, revealing a therapeutic vulnerability targetable by BET inhibition.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Histona-Lisina N-Metiltransferase/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Translocação Genética/genética , Animais , Compostos Azabicíclicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Piridinas/administração & dosagem , Proteínas Repressoras/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Ativação Transcricional , Transfecção , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancer Res ; 79(18): 4679-4688, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31337650

RESUMO

Overexpression of PRL-3, an oncogenic phosphatase, was identified as a novel cluster in patients with newly diagnosed multiple myeloma. However, the regulation and oncogenic activities of PRL-3 in multiple myeloma warrant further investigation. Here, we report that IL6 activates STAT3, which acts as a direct transcriptional regulator of PRL-3. Upregulation of PRL-3 increased myeloma cell viability and rephosphorylated STAT3 in a biphasic manner through direct interaction and deactivation of SHP2, thus blocking the gp130 (Y759)-mediated repression of STAT3 activity. Abrogation of PRL-3 reduced myeloma cell survival, clonogenicity, and tumorigenesis, and detailed mechanistic studies revealed "deactivation" of effector proteins such as Akt, Erk1/2, Src, STAT1, and STAT3. Furthermore, loss of PRL-3 efficiently abolished nuclear localization of STAT3 and reduced its occupancy on the promoter of target genes c-Myc and Mcl-1, and antiapoptotic genes Bcl2 and Bcl-xL. PRL-3 also played a role in the acquired resistance of myeloma cells to bortezomib, which could be overcome by PRL-3 silencing. Of clinical relevance, STAT3 and PRL-3 expression was positively correlated in five independent cohorts, and the STAT3 activation signature was significantly enriched in patients with high PRL-3 expression. Furthermore, PRL-3 could be used as a biomarker to identify high-risk patients with multiple myeloma that exhibited poor prognosis and inferior outcome even when treated with novel combinational therapeutics (proteasome inhibitors and immunomodulatory imide drugs). Conclusively, our results support a feedforward mechanism between STAT3 and PRL-3 that prolongs prosurvival signaling in multiple myeloma, and suggest targeting PRL-3 as a valid therapeutic opportunity in multiple myeloma. SIGNIFICANCE: IL6 promotes STAT3-dependent transcriptional upregulation of PRL-3, which in turn re-phosphorylates STAT3 and aberrantly activates STAT3 target genes, leading to bortezomib resistance in multiple myeloma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Interleucina-6/farmacologia , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Bortezomib/farmacologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/genética , Fosforilação , Prognóstico , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Tirosina Fosfatases/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Emerg Infect Dis ; 24(1): 114-117, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29260678

RESUMO

To determine whether fruit bats in Singapore have been exposed to filoviruses, we screened 409 serum samples from bats of 3 species by using a multiplex assay that detects antibodies against filoviruses. Positive samples reacted with glycoproteins from Bundibugyo, Ebola, and Sudan viruses, indicating filovirus circulation among bats in Southeast Asia.


Assuntos
Quirópteros/sangue , Quirópteros/virologia , Ebolavirus , Marburgvirus , Proteínas do Envelope Viral/sangue , Animais , Glicoproteínas/sangue , Glicoproteínas/genética , Glicoproteínas/isolamento & purificação , Estudos Soroepidemiológicos , Singapura/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA