Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Brain Commun ; 6(3): fcae094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707706

RESUMO

Functional connectivity resting-state functional magnetic resonance imaging has been proposed to predict antipsychotic treatment response in schizophrenia. However, only a few prospective studies have examined baseline resting-state functional magnetic resonance imaging data in drug-naïve first-episode schizophrenia patients with regard to subsequent treatment response. Data-driven approaches to conceptualize and measure functional connectivity patterns vary broadly, and model-free, voxel-wise, whole-brain analysis techniques are scarce. Here, we apply such a method, called connectivity concordance mapping to resting-state functional magnetic resonance imaging data acquired from an Asian sample (n = 60) with first-episode psychosis, prior to pharmaceutical treatment. Using a longitudinal design, 12 months after the resting-state functional magnetic resonance imaging, we measured and classified patients into two groups based on psychometric testing: treatment responsive and treatment resistant. Next, we compared the two groups' connectivity concordance maps that were derived from the resting-state functional magnetic resonance imaging data at baseline. We have identified consistently higher functional connectivity in the treatment-resistant group in a network including the left hippocampus, bilateral insula and temporal poles. These data-driven novel findings can help researchers to consider new regions of interest and facilitate biomarker development in order to identify treatment-resistant schizophrenia patients early, in advance of treatment and at the time of their first psychotic episode.

2.
Mol Neurobiol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671329

RESUMO

Meditation-based interventions are novel and effective non-pharmacologic treatments for veterans with PTSD. We examined relationships between treatment response, early life trauma exposure, DNA polymorphisms, and methylation in the serotonin transporter (SLC6A4) and FK506-binding protein 5 (FKBP5) genes. DNA samples and clinical outcomes were examined in 72 veterans with PTSD who received meditation-based therapy in two separate studies of mindfulness-based stress reduction (MBSR) and Transcendental Meditation (TM). The PTSD Checklist was administered to assess symptoms at baseline and after 9 weeks of meditation intervention. We examined the SLC6A4 promoter (5HTTLPR_L/S insertion/deletion + rs25531_A/G) polymorphisms according to previously defined gene expression groups, and the FKBP5 variant rs1360780 previously associated with PTSD disease risk. Methylation for CpG sites of SLC6A4 (28 sites) and FKBP5 (45 sites) genes was quantified in DNA samples collected before and after treatment. The 5HTTLPR LALA high expression genotype was associated with greater symptom improvement in participants exposed to early life trauma (p = 0.015). Separately, pre to post-treatment change of DNA methylation in a group of nine FKBP5 CpG sites was associated with greater symptom improvement (OR = 2.8, 95% CI 1.1-7.1, p = 0.027). These findings build on a wealth of existing knowledge regarding epigenetic and genetic relationships with PTSD disease risk to highlight the potential importance of SLC6A4 and FKBP5 for treatment mechanisms and as biomarkers of symptom improvement.

3.
J Affect Disord ; 354: 589-600, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484878

RESUMO

BACKGROUND: Transcranial magnetic stimulation (TMS) is an intervention for treatment-resistant depression (TRD) that modulates neural activity. Deep TMS (dTMS) can target not only cortical but also deeper limbic structures implicated in depression. Although TMS has demonstrated safety in adolescents, dTMS has yet to be applied to adolescent TRD. OBJECTIVE/HYPOTHESIS: This pilot study evaluated the safety, tolerability, and clinical effects of dTMS in adolescents with TRD. We hypothesized dTMS would be safe, tolerable, and efficacious for adolescent TRD. METHODS: 15 adolescents with TRD (Age, years: M = 16.4, SD = 1.42) completed a six-week daily dTMS protocol targeting the left dorsolateral prefrontal cortex (BrainsWay H1 coil, 30 sessions, 10 Hz, 3.6 s train duration, 20s inter-train interval, 55 trains; 1980 total pulses per session, 80 % to 120 % of motor threshold). Participants completed clinical, safety, and neurocognitive assessments before and after treatment. The primary outcome was depression symptom severity measured by the Children's Depression Rating Scale-Revised (CDRS-R). RESULTS: 14 out of 15 participants completed the dTMS treatments. One participant experienced a convulsive syncope; the other participants only experienced mild side effects (e.g., headaches). There were no serious adverse events and minimal to no change in cognitive performance. Depression symptom severity significantly improved pre- to post-treatment and decreased to a clinically significant degree after 10 treatment sessions. Six participants met criteria for treatment response. LIMITATIONS: Main limitations include a small sample size and open-label design. CONCLUSIONS: These findings provide preliminary evidence that dTMS may be tolerable and associated with clinical improvement in adolescent TRD.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Estimulação Magnética Transcraniana , Criança , Humanos , Adolescente , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/métodos , Depressão , Projetos Piloto , Resultado do Tratamento , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Córtex Pré-Frontal
4.
JMIR Res Protoc ; 12: e51235, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792432

RESUMO

BACKGROUND: Military services provide a unique opportunity for studying resilience, a dynamic process of successful adaptation (ie, doing well in terms of functioning and symptoms) in response to significant adversity. Despite the tremendous interest in positive adaptation among military service members, little is known about the processes underlying their resilience. Understanding the neurobiological, cognitive, and social mechanisms underlying adaptive functioning following military stressor exposure is essential for enhancing the resilience of military service members. OBJECTIVE: The primary objective of the Advancing Research on Mechanisms of Resilience (ARMOR) longitudinal study is to characterize the trajectories of positive adaptation among young military recruits in response to basic combat training (BCT), a well-defined, uniform, and 10-week period of intense stress (aim 1), and identify promotive and protective processes contributing to individual variations in resilience (aim 2). The secondary objective is to investigate the pathways by which neurobehavioral markers of self-regulation assessed using electroencephalography and magnetic resonance imaging contribute to adaptive trajectories (aim 3). METHODS: ARMOR is an ongoing, prospective longitudinal cohort study of young military recruits who recently joined the National Guard but have not yet shipped out for BCT. Participants (N=1201) are assessed at 5 time points over the initial >2 years of military service beginning before BCT (baseline) and followed up at 2 weeks and 6, 12, and 18 months after BCT. Participants complete web-based questionnaires assessing vulnerability and protective factors, mental health, and socioemotional functioning at each time point and a battery of neurocognitive tests at time 0. A subset of participants also complete structured diagnostic interviews and additional self-report measures and perform neurobehavioral tasks before and after BCT during electroencephalography sessions and before BCT only during magnetic resonance imaging sessions. RESULTS: This UG3/UH3 project was initially funded in August 2017, with the UG3 pilot work completed at the end of 2018. The UH3 phase of the project was funded in March 2019. Study enrollment for the UH3 phase began on April 14, 2019, and ended on October 16, 2021. A total of 1201 participants are enrolled in the study. Follow-up data collection for the UH3 phase is ongoing and projected to continue through February 2024. We will disseminate the findings through conferences, webinars, open access publications, and communications with participants and stakeholders. CONCLUSIONS: The ARMOR study provides a rich data set to identify the predictors and mechanisms of resilient and nonresilient outcomes in the context of military stressors, which are intended to empirically inform the development of prevention and intervention strategies to enhance the resilience of military trainees and potentially other young people facing significant life challenges. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/51235.

5.
Hum Brain Mapp ; 44(17): 6275-6287, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37750607

RESUMO

In many clinical trials involving transcranial electrical stimulation (tES), target electrodes are typically placed over DLPFC with the assumption that this will primarily stimulate the underlying brain region. However, our study aimed to evaluate the electric fields (EF) that are actually delivered and identify prefrontal regions that may be inadvertently targeted in DLPFC tES. Head models were generated from the Human Connectome Project database's T1 + T2-weighted MRIs of 80 healthy adults. Two common DLPFC montages were simulated; symmetric-F4/F3, and asymmetric-F4/Fp1. Averaged EF was extracted from (1) the center of the target electrode (F4), and (2) the top 1% of voxels showing the strongest EF in individualized EF maps. Interindividual variabilities were quantified with the standard deviation of EF peak location/value. Similar steps were repeated with 66 participants with methamphetamine use disorder (MUDs) as an independent clinical population. In healthy adults, the group-level location of EF peaks was situated in the medial-frontopolar, and the individualized EF peaks were positioned in a cube with a volume of 29 cm3 /46 cm3 (symmetric/asymmetric montages). EFs in the frontopolar area were significantly higher than EF "under" the target electrode in both symmetric (peak: 0.41 ± 0.06, F4:0.22 ± 0.04) and asymmetric (peak: 0.38 ± 0.04, F4:0.2 ± 0.04) montages (Heges'g > 0.7). Similar results with slight between-group differences were found in MUDs. We highlighted that in common DLPFC tES montages, in addition to interindividual/intergroup variability, the frontopolar received the highest EFs rather than DLPFC as the main target. We specifically recommended considering the potential involvement of the frontopolar area as a mechanism underlying the effectiveness of DLPFC tES protocols.


Assuntos
Córtex Pré-Frontal Dorsolateral , Estimulação Transcraniana por Corrente Contínua , Adulto , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Encéfalo/fisiologia , Eletrodos , Córtex Pré-Frontal/diagnóstico por imagem
6.
Psychiatry Res Neuroimaging ; 335: 111710, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690161

RESUMO

Individuals with schizophrenia (SZ) show aberrant activations, assessed via functional magnetic resonance imaging (fMRI), during auditory oddball tasks. However, associations with cognitive performance and genetic contributions remain unknown. This study compares individuals with SZ to healthy volunteers (HVs) using two cross-sectional data sets from multi-center brain imaging studies. It examines brain activation to auditory oddball targets, and their associations with cognitive domain performance, schizophrenia polygenic risk scores (PRS), and genetic variation (loci). Both sample 1 (137 SZ vs. 147 HV) and sample 2 (91 SZ vs. 98 HV), showed hypoactivation in SZ in the left-frontal pole, and right frontal orbital, frontal pole, paracingulate, intracalcarine, precuneus, supramarginal and hippocampal cortices, and right thalamus. In SZ, precuneus activity was positively related to cognitive performance. Schizophrenia PRS showed a negative correlation with brain activity in the right-supramarginal cortex. GWA analyses revealed significant single-nucleotide polymorphisms associated with right-supramarginal gyrus activity. RPL36 also predicted right-supramarginal gyrus activity. In addition to replicating hypoactivation for oddball targets in SZ, this study identifies novel relationships between regional activity, cognitive performance, and genetic loci that warrant replication, emphasizing the need for continued data sharing and collaborative efforts.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/complicações , Estudos Transversais , Encéfalo , Córtex Cerebral , Lobo Frontal
7.
Int J Eat Disord ; 56(11): 2012-2021, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548100

RESUMO

OBJECTIVE: Precision medicine (i.e., individually tailored treatments) represents an optimal goal for treating complex psychiatric disorders, including eating disorders. Within the eating disorders field, most treatment development efforts have been limited in their ability to identify individual-level models of eating disorder psychopathology and to develop and apply an individually tailored treatment for a given individual's personalized model of psychopathology. In addition, research is still needed to identify causal relationships within a given individual's model of eating disorder psychopathology. Addressing this limitation of the current state of precision medicine-related research in the field will allow us to progress toward advancing research and practice for eating disorders treatment. METHOD: We present a novel set of analytic tools, causal discovery analysis (CDA) methods, which can facilitate increasingly fine-grained, person-specific models of causal relations among cognitive, behavioral, and affective symptoms. RESULTS: CDA can advance the identification of an individual's causal model that maintains that individuals' eating disorder psychopathology. DISCUSSION: In the current article, we (1) introduce CDA methods as a set of promising analytic tools for developing precision medicine methods for eating disorders including the potential strengths and weaknesses of CDA, (2) provide recommendations for future studies utilizing this approach, and (3) outline the potential clinical implications of using CDA to generate personalized models of eating disorder psychopathology. PUBLIC SIGNIFICANCE STATEMENT: CDA provides a novel statistical approach for identifying causal relationships among variables of interest for a given individual. Person-specific causal models may offer a promising approach to individualized treatment planning and inform future personalized treatment development efforts for eating disorders.


Assuntos
Transtornos da Alimentação e da Ingestão de Alimentos , Medicina de Precisão , Humanos , Transtornos da Alimentação e da Ingestão de Alimentos/diagnóstico , Transtornos da Alimentação e da Ingestão de Alimentos/terapia , Psicopatologia
8.
Cereb Cortex ; 33(17): 9756-9763, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37415080

RESUMO

Theoretical models group maladaptive behaviors in addiction into neurocognitive domains such as incentive salience (IS), negative emotionality (NE), and executive functioning (EF). Alterations in these domains lead to relapse in alcohol use disorder (AUD). We examine whether microstructural measures in the white matter pathways supporting these domains are associated with relapse in AUD. Diffusion kurtosis imaging data were collected from 53 individuals with AUD during early abstinence. We used probabilistic tractography to delineate the fornix (IS), uncinate fasciculus (NE), and anterior thalamic radiation (EF) in each participant and extracted mean fractional anisotropy (FA) and kurtosis fractional anisotropy (KFA) within each tract. Binary (abstained vs. relapsed) and continuous (number of days abstinent) relapse measures were collected over a 4-month period. Across tracts, anisotropy measures were typically (i) lower in those that relapsed during the follow-up period and (ii) positively associated with the duration of sustained abstinence during the follow-up period. However, only KFA in the right fornix reached significance in our sample. The association between microstructural measures in these fiber tracts and treatment outcome in a small sample highlights the potential utility of the three-factor model of addiction and the role of white matter alterations in AUD.


Assuntos
Alcoolismo , Substância Branca , Humanos , Alcoolismo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Consumo de Bebidas Alcoólicas , Imagem de Tensor de Difusão/métodos , Doença Crônica , Recidiva , Anisotropia , Encéfalo/diagnóstico por imagem
9.
medRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502945

RESUMO

Background: Military service provides a unique opportunity for studying resilience, a dynamic process of successful adaptation (i.e., doing well in terms of functioning and symptoms) in response to significant adversity. Despite tremendous interest in positive adaptation among military service members, little is known about the processes underlying their resilience. Understanding neurobiological, cognitive, and social mechanisms underlying adaptive functioning following military stressor exposure is essential to enhance the resilience of military service members. Objectives: The primary objective of the Advancing Research on Mechanisms of Resilience (ARMOR) longitudinal study is to characterize trajectories of positive adaptation among young military recruits in response to Basic Combat Training (BCT), a well-defined, uniform, 10-week period of intense stress (Aim 1) and identify promotive and protective processes contributing to individual variations in resilience (Aim 2). The secondary objective is to investigate pathways by which neurobehavioral markers of self-regulation assessed by electroencephalography (EEG) and magnetic resonance imaging (MRI) contribute to adaptive trajectories (Aim 3). Methods: ARMOR is an ongoing, prospective longitudinal cohort study of young military recruits who recently joined the National Guard but have not yet shipped for BCT. Participants (N=1,201) are assessed at five timepoints over the initial 2+ years of military service beginning before BCT (baseline) and followed up at 2 weeks, 6, 12, and 18 months post-BCT. At each time point, participants complete online questionnaires assessing vulnerability and protective factors, mental health and social-emotional functioning, and, at Time 0 only, a battery of neurocognitive tests. A subset of participants also complete structured diagnostic interviews, additional self-report measures, and perform neurobehavioral tasks before and after BCT during EEG sessions, and, at pre-BCT only, during MRI sessions. Results: Study enrollment began April 14, 2019 and ended in October 16, 2021. A total of 1,201 participants are enrolled in the study (68.9% male; mean age = 18.9, SD = 3.0). Follow-up data-collection is ongoing and projected to continue through March 2024. We will disseminate findings through conferences, webinars, open access publications, and communications with participants and stakeholders. Conclusions: Results are expected to elucidate how young military recruits adapt to military stressors during the initial years of military service. Understanding positive adaptation of military recruits in the face of BCT has implications for developing prevention and intervention strategies to enhance resilience of military trainees and potentially other young people facing significant life challenges.

10.
Brain Stimul ; 16(4): 1032-1040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37348702

RESUMO

BACKGROUND: Brain-based interventions are needed to address persistent relapse in alcohol use disorder (AUD). Neuroimaging evidence suggests higher frontal connectivity as well as higher within-network connectivity of theoretically defined addiction networks are associated with reduced relapse rates and extended abstinence during follow-up periods. OBJECTIVE: /Hypothesis: A longitudinal randomized double-blind sham-controlled clinical trial investigated whether a non-invasive neuromodulation intervention delivered during early abstinence can (i) modulate connectivity of addiction networks supporting abstinence and (ii) improve relapse rates. HYPOTHESES: Active transcranial direct current stimulation (tDCS) will (i) increase connectivity of addiction networks known to support abstinence and (ii) reduce relapse rates. METHODS: Short-term abstinent AUD participants (n = 60) were assigned to 5 days of either active tDCS or sham during cognitive training. Causal discovery analysis (CDA) examined the directional influence from left dorsolateral prefrontal cortex (LDLPFC, stimulation site) to addiction networks that support abstinence. RESULTS: Active tDCS had an effect on the average strength of CDA-determined connectivity from LDLPFC to the incentive salience and negative emotionality addiction networks - increasing in the active tDCS group only. Active tDCS had an effect on relapse rates following the intervention, with lower probability of relapse in the active tDCS vs. sham. Active tDCS showed an unexpected sex-dependent effect on relapse rates. CONCLUSION: Our results suggest that LDLPFC stimulation delivered during early abstinence has an effect on addiction networks supporting abstinence and on relapse rates. The unexpected sex-dependent neuromodulation effects need to be further examined in larger clinical trials.


Assuntos
Comportamento Aditivo , Estimulação Transcraniana por Corrente Contínua , Humanos , Consumo de Bebidas Alcoólicas , Comportamento Aditivo/terapia , Doença Crônica , Córtex Pré-Frontal Dorsolateral , Método Duplo-Cego , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Feminino
11.
Alcohol Clin Exp Res (Hoboken) ; 47(7): 1312-1326, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37132064

RESUMO

BACKGROUND: Prenatal alcohol exposure (PAE) is associated with abnormalities in cortical structure and maturation, including cortical thickness (CT), cortical volume, and surface area. This study provides a longitudinal context for the developmental trajectory and timing of abnormal cortical maturation in PAE. METHODS: We studied 35 children with PAE and 30 nonexposed typically developing children (Comparisons), aged 8-17 at enrollment, who were recruited from the University of Minnesota FASD Program. Participants were matched on age and sex. They underwent a formal evaluation of growth and dysmorphic facial features associated with PAE and completed cognitive testing. MRI data were collected on a Siemens Prisma 3T scanner. Two sessions, each including MRI scans and cognitive testing, were spaced approximately 15 months apart on average. Change in CT and performance on tests of executive function (EF) were examined. RESULTS: Significant age-by-group (PAE vs. Comparison) linear interaction effects in CT were observed in the parietal, temporal, occipital, and insular cortices suggesting altered developmental trajectories in the PAE vs. Comparison groups. Results suggest a pattern of delayed cortical thinning in PAE, with the Comparison group showing more rapid thinning at younger ages and those with PAE showing accelerated thinning at older ages. Overall, children in the PAE group showed reduced cortical thinning across time relative to the Comparison participants. Symmetrized percent change (SPC) in CT in several regions was significantly correlated with EF performance at 15-month follow-up for the Comparison group but not the group with PAE. CONCLUSIONS: Regional differences were seen longitudinally in the trajectory and timing of CT change in children with PAE, suggesting delayed cortical maturation and an atypical pattern of development compared with typically developing individuals. In addition, exploratory correlation analyses of SPC and EF performance suggest the presence of atypical brain-behavior relationships in PAE. The findings highlight the potential role of altered developmental timing of cortical maturation in contributing to long-term functional impairment in PAE.

12.
Front Neurosci ; 17: 1172010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168930

RESUMO

Introduction: Fetal alcohol spectrum disorder (FASD), a life-long condition resulting from prenatal alcohol exposure (PAE), is associated with structural brain anomalies and neurobehavioral differences. Evidence from longitudinal neuroimaging suggest trajectories of white matter microstructure maturation are atypical in PAE. We aimed to further characterize longitudinal trajectories of developmental white matter microstructure change in children and adolescents with PAE compared to typically-developing Controls using diffusion-weighted Neurite Orientation Dispersion and Density Imaging (NODDI). Materials and methods: Participants: Youth with PAE (n = 34) and typically-developing Controls (n = 31) ages 8-17 years at enrollment. Participants underwent formal evaluation of growth and facial dysmorphology. Participants also completed two study visits (17 months apart on average), both of which involved cognitive testing and an MRI scan (data collected on a Siemens Prisma 3 T scanner). Age-related changes in the orientation dispersion index (ODI) and the neurite density index (NDI) were examined across five corpus callosum (CC) regions defined by tractography. Results: While linear trajectories suggested similar overall microstructural integrity in PAE and Controls, analyses of symmetrized percent change (SPC) indicated group differences in the timing and magnitude of age-related increases in ODI (indexing the bending and fanning of axons) in the central region of the CC, with PAE participants demonstrating atypically steep increases in dispersion with age compared to Controls. Participants with PAE also demonstrated greater increases in ODI in the mid posterior CC (trend-level group difference). In addition, SPC in ODI and NDI was differentially correlated with executive function performance for PAE participants and Controls, suggesting an atypical relationship between white matter microstructure maturation and cognitive function in PAE. Discussion: Preliminary findings suggest subtle atypicality in the timing and magnitude of age-related white matter microstructure maturation in PAE compared to typically-developing Controls. These findings add to the existing literature on neurodevelopmental trajectories in PAE and suggest that advanced biophysical diffusion modeling (NODDI) may be sensitive to biologically-meaningful microstructural changes in the CC that are disrupted by PAE. Findings of atypical brain maturation-behavior relationships in PAE highlight the need for further study. Further longitudinal research aimed at characterizing white matter neurodevelopmental trajectories in PAE will be important.

13.
medRxiv ; 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37066153

RESUMO

Background: Previous studies in people with substance use disorders (SUDs) have implicated both the frontopolar cortex and amygdala in drug cue reactivity and craving, and amygdala-frontopolar coupling is considered a marker of early relapse risk. Accumulating data highlight that the frontopolar cortex can be considered a promising therapeutic target for transcranial magnetic stimulation (TMS) in SUDs. However, one-size-fits-all approaches to TMS targets resulted in substantial variation in both physiological and behavioral outcomes. Individualized TMS approaches to target cortico-subcortical circuits like amygdala-frontopolar have not yet been investigated in SUDs. Objective: Here, we (1) defined individualized TMS target location based on functional connectivity of the amygdala-frontopolar circuit while people were exposed to drug-related cues, (2) optimized coil orientation based on maximizing electric field (EF) perpendicular to the individualized target, and (3) harmonized EF strength in targeted brain regions across a population. Method: MRI data including structural, resting-state, and task-based fMRI data were collected from 60 participants with methamphetamine use disorders (MUDs). Craving scores based on a visual analog scale were collected immediately before and after the MRI session. We analyzed inter-subject variability in the location of TMS targets based on the maximum task-based connectivity between the left medial amygdala (with the highest functional activity among subcortical areas during drug cue exposure) and frontopolar cortex using psychophysiological interaction (PPI) analysis. Computational head models were generated for all participants and EF simulations were calculated for fixed vs. optimized coil location (Fp1/Fp2 vs. individualized maximal PPI location), orientation (AF7/AF8 vs. orientation optimization algorithm), and stimulation intensity (constant vs. adjusted intensity across the population). Results: Left medial amygdala with the highest (mean ± SD: 0.31±0.29) functional activity during drug cue exposure was selected as the subcortical seed region. Amygdala-to-whole brain PPI analysis showed a significant cluster in the prefrontal cortex (cluster size: 2462 voxels, cluster peak in MNI space: [25 39 35]) that confirms cortico-subcortical connections. The location of the voxel with the most positive amygdala-frontopolar PPI connectivity in each participant was considered as the individualized TMS target (mean ± SD of the MNI coordinates: [12.6 64.23 -0.8] ± [13.64 3.50 11.01]). Individual amygdala-frontopolar PPI connectivity in each participant showed a significant correlation with VAS scores after cue exposure (R=0.27, p=0.03). Averaged EF strength in a sphere with r = 5mm around the individualized target location was significantly higher in the optimized (mean ± SD: 0.99 ± 0.21) compared to the fixed approach (Fp1: 0.56 ± 0.22, Fp2: 0.78 ± 0.25) with large effect sizes (Fp1: p = 1.1e-13, Hedges'g = 1.5, Fp2: p = 1.7e-5, Hedges'g = 1.26). Adjustment factor to have identical 1 V/m EF strength in a 5mm sphere around the individualized targets ranged from 0.72 to 2.3 (mean ± SD: 1.07 ± 0.29). Conclusion: Our results show that optimizing coil orientation and stimulation intensity based on individualized TMS targets led to stronger electric fields in the targeted brain regions compared to a one-size-fits-all approach. These findings provide valuable insights for refining TMS therapy for SUDs by optimizing the modulation of cortico-subcortical circuits.

14.
J Voice ; 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37019804

RESUMO

PURPOSE: The purpose of this study was to assess the relationship and comparability of cepstral and spectral measures of voice obtained from a high-cost "flat" microphone and precision sound level meter (SLM) vs. high-end and entry level models of commonly and currently used smartphones (iPhone i12 and iSE; Samsung s21 and s9 smartphones). Device comparisons were also conducted in different settings (sound-treated booth vs. typical "quiet" office room) and at different mouth-to-microphone distances (15 and 30 cm). METHODS: The SLM and smartphone devices were used to record a series of speech and vowel samples from a prerecorded diverse set of 24 speakers representing a wide range of sex, age, fundamental frequency (F0), and voice quality types. Recordings were analyzed for the following measures: smoothed cepstral peak prominence (CPP in dB); the low vs high spectral ratio (L/H Ratio in dB); and the Cepstral Spectral Index of Dysphonia (CSID). RESULTS: A strong device effect was observed for L/H Ratio (dB) in both vowel and sentence contexts and for CSID in the sentence context. In contrast, device had a weak effect on CPP (dB), regardless of context. Recording distance was observed to have a small-to-moderate effect on measures of CPP and CSID but had a negligible effect on L/H Ratio. With the exception of L/H Ratio in the vowel context, setting was observed to have a strong effect on all three measures. While these aforementioned effects resulted in significant differences between measures obtained with SLM vs. smartphone devices, the intercorrelations of the measurements were extremely strong (r's > 0.90), indicating that all devices were able to capture the range of voice characteristics represented in the voice sample corpus. Regression modeling showed that acoustic measurements obtained from smartphone recordings could be successfully converted to comparable measurements obtained by a "gold standard" (precision SLM recordings conducted in a sound-treated booth at 15 cm) with small degrees of error. CONCLUSIONS: These findings indicate that a variety of commonly available modern smartphones can be used to collect high quality voice recordings usable for informative acoustic analysis. While device, setting, and distance can have significant effects on acoustic measurements, these effects are predictable and can be accounted for using regression modeling.

15.
Neuroimage Clin ; 38: 103382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36965455

RESUMO

BACKGROUND: Functional connectivity has been associated with psychiatric problems, both in children and adults, but inconsistencies are present across studies. Prior research has mostly focused on small clinical samples with cross-sectional designs. METHODS: We adopted a longitudinal design with repeated assessments to investigate associations between functional network connectivity (FNC) and psychiatric problems in youth (9- to 17-year-olds, two time points) from the general population. The largest single-site study of pediatric neurodevelopment was used: Generation R (N = 3,131 with data at either time point). Psychiatric symptoms were measured with the Child Behavioral Checklist as broadband internalizing and externalizing problems, and its eight specific syndrome scales (e.g., anxious-depressed). FNC was assessed with two complementary approaches. First, static FNC (sFNC) was measured with graph theory-based metrics. Second, dynamic FNC (dFNC), where connectivity is allowed to vary over time, was summarized into 5 states that participants spent time in. Cross-lagged panel models were used to investigate the longitudinal bidirectional relationships of sFNC with internalizing and externalizing problems. Similar cross-lagged panel models were run for dFNC. RESULTS: Small longitudinal relationships between dFNC and certain syndrome scales were observed, especially for baseline syndrome scales (i.e., rule-breaking, somatic complaints, thought problems, and attention problems) predicting connectivity changes. However, no association between any of the psychiatric problems (broadband and syndrome scales) with either measure of FNC survived correction for multiple testing. CONCLUSION: We found no or very modest evidence for longitudinal associations between psychiatric problems with dynamic and static FNC in this population-based sample. Differences in findings may stem from the population drawn, study design, developmental timing, and sample sizes.


Assuntos
Transtornos Mentais , Adulto , Humanos , Criança , Adolescente , Estudos Transversais , Transtornos Mentais/diagnóstico por imagem , Ansiedade , Rede Nervosa , Encéfalo
16.
medRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36824785

RESUMO

Background: Chronic low back pain (cLBP) affects the quality of life of 52 million Americans and leads to an enormous personal and economic burden. A multidisciplinary approach to cLBP management is recommended. Since medication has limited efficacy and there are mounting concerns about opioid addiction, the American College of Physicians and American Pain Society recommend non-pharmacological interventions, such as mind and body approaches (e.g., Qigong, yoga, Tai Chi) before prescribing medications. Of those, Qigong practice might be most accessible given its gentle movements and because it can be performed standing, sitting, or lying down. The three available Qigong studies in adults with cLBP showed that Qigong reduced pain more than waitlist and equally well than exercise. Yet, the duration and/or frequency of Qigong practice were low (<12 weeks or less than 3x/week). The objectives of this study were to investigate the feasibility of practicing Spring Forest Qigong™ or performing P.Volve low intensity exercises 3x/week for 12 weeks, feasibility of recruitment, data collection, delivery of the intervention as intended, as well as identify estimates of efficacy on brain function and behavioral outcomes after Qigong practice or exercise. To our knowledge, this is the first study investigating the feasibility of the potential effect of Qigong on brain function in adults with cLBP. Methods: We conducted a feasibility Phase I Randomized Clinical Trial. Of the 36 adults with cLBP recruited between January 2020 and June 2021, 32 were enrolled and randomized to either 12 weeks of remote Spring Forest Qigong™ practice or remote P.Volve low-intensity exercises. Participants practiced at least 3x/week for 41min/session with online videos. Our main outcome measures were the Numeric Pain Rating Scale (highest, average, and lowest cLBP pain intensity levels in the prior week), assessed weekly and fMRI data (resting-state and task-based fMRI tasks: pain imagery, kinesthetic imagery of a Qigong movement, and robot-guided shape discrimination). We compared baseline resting-state connectivity and brain activation during fMRI tasks in adults with cLBP with data from a healthy control group (n=28) acquired in a prior study. Secondary outcomes included measures of function, disability, body awareness, kinesiophobia, balance, self-efficacy, core muscle strength, and ankle proprioceptive acuity with a custom-build device. Results: Feasibility of the study design and methods was demonstrated with 30 participants completing the study (94% retention) and reporting high satisfaction with the programs; 96% adherence to P.Volve low-intensity exercises, and 128% of the required practice intensity for Spring Forest Qigong™ practice. Both groups saw promising reductions in low back pain (effect sizes Cohen's d =1.01-2.22) and in most other outcomes ( d =0.90-2.33). Markers of ankle proprioception were not significantly elevated in the cLBP group after the interventions. Brain imaging analysis showed weaker parietal operculum and insula network connectivity in adults with cLBP (n=26), compared to data from a healthy control group (n=28). The pain imagery task elicited lower brain activation of insula, parietal operculum, angular gyrus and supramarginal gyrus at baseline in adults with cLBP than in healthy adults. Adults with cLBP had lower precentral gyrus activation than healthy adults for the Qigong movement and robot task at baseline. Pre-post brain function changes showed individual variability: Six (out of 13) participants in the Qigong group showed increased activation in the parietal operculum, angular gyrus, supramarginal gyrus, and precentral gyrus during the Qigong fMRI task. Interpretation: Our data indicate the feasibility and acceptability of using Spring Forest Qigong™ practice or P.Volve low-intensity exercises for cLBP relief showing promising results in terms of pain relief and associated symptoms. Our brain imaging results indicated brain function improvements after 12 weeks of Qigong practice in some participants, pointing to the need for further investigation in larger studies. Trial registration number: ClinicalTrials.gov: NCT04164225 .

17.
medRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798345

RESUMO

Background: Neuropathic pain after spinal cord injury (SCI) is notoriously hard to treat. Mechanisms of neuropathic pain are unclear, which makes finding effective treatments challenging. Prior studies have shown that adults with SCI have body awareness deficits. Recent imaging studies, including ours, point to the parietal operculum and insula as key areas for both pain perception and body awareness. Cognitive multisensory rehabilitation (CMR) is a physical therapy approach that helps improve body awareness for pain reduction and sensorimotor recovery. Based on our prior brain imaging work in CMR in stroke, we hypothesized that improving body awareness through restoring parietal operculum network connectivity leads to neuropathic pain relief and improved sensorimotor and daily life function in adults with SCI. Thus, the objectives of this study were to (1) determine baseline differences in resting-state and task-based functional magnetic resonance imaging (fMRI) brain function in adults with SCI compared to healthy controls and (2) identify changes in brain function and behavioral pain and pain-associated outcomes in adults with SCI after CMR. Methods: Healthy adults underwent a one-time MRI scan and completed questionnaires. We recruited community-dwelling adults with SCI-related neuropathic pain, with complete or incomplete SCI >3 months, and highest neuropathic pain intensity level of >3 on the Numeric Pain Rating Scale (NPRS). Participants with SCI were randomized into two groups, according to a delayed treatment arm phase I randomized controlled trial (RCT): Group A immediately received CMR intervention, 3x/week, 45 min/session, followed by a 6-week and 1-year follow-up. Group B started with a 6-week observation period, then 6 weeks of CMR, and a 1-year follow-up. Highest, average, and lowest neuropathic pain intensity levels were assessed weekly with the NPRS as primary outcome. Other primary outcomes (fMRI resting-state and functional tasks; sensory and motor function with the INSCI AIS exam), as well as secondary outcomes (mood, function, spasms, and other SCI secondary conditions), were assessed at baseline, after the first and second 6-week period. The INSCI AIS exam and questionnaires were repeated at the 1-year follow-up. Findings: Thirty-six healthy adults and 28 adults with SCI were recruited between September 2020 and August 2021, and of those, 31 healthy adults and 26 adults with SCI were enrolled in the study. All 26 participants with SCI completed the intervention and pre-post assessments. There were no study-related adverse events. Participants were 52±15 years of age, and 1-56 years post-SCI. During the observation period, group B did not show any reductions in neuropathic pain and did not have any changes in sensation or motor function (INSCI ASIA exam). However, both groups experienced a significant reduction in neuropathic pain after the 6-week CMR intervention. Their highest level of neuropathic pain of 7.81±1.33 on the NPRS at baseline was reduced to 2.88±2.92 after 6 weeks of CMR. Their change scores were 4.92±2.92 (large effect size Cohen's d =1.68) for highest neuropathic pain, 4.12±2.23 ( d =1.85) for average neuropathic pain, and 2.31±2.07 ( d =1.00) for lowest neuropathic pain. Nine participants out of 26 were pain-free after the intervention (34.62%). The results of the INSCI AIS testing also showed significant improvements in sensation, muscle strength, and function after 6 weeks of CMR. Their INSCI AIS exam increased by 8.81±5.37 points ( d =1.64) for touch sensation, 7.50±4.89 points ( d =1.53) for pin prick sensation, and 3.87±2.81 ( d =1.38) for lower limb muscle strength. Functional improvements after the intervention included improvements in balance for 17 out of 18 participants with balance problems at baseline; improved transfers for all of them and a returned ability to stand upright with minimal assistance in 12 out of 20 participants who were unable to stand at baseline. Those improvements were maintained at the 1-year follow-up. With regard to brain imaging, we confirmed that the resting-state parietal operculum and insula networks had weaker connections in adults with SCI-related neuropathic pain (n=20) compared to healthy adults (n=28). After CMR, stronger resting-state parietal operculum network connectivity was found in adults with SCI. Also, at baseline, as expected, right toe sensory stimulation elicited less brain activation in adults with SCI (n=22) compared to healthy adults (n=26). However, after CMR, there was increased brain activation in relevant sensorimotor and parietal areas related to pain and mental body representations (i.e., body awareness and visuospatial body maps) during the toe stimulation fMRI task. These brain function improvements aligned with the AIS results of improved touch sensation, including in the feet. Interpretation: Adults with chronic SCI had significant neuropathic pain relief and functional improvements, attributed to the recovery of sensation and movement after CMR. The results indicate the preliminary efficacy of CMR for restoring function in adults with chronic SCI. CMR is easily implementable in current physical therapy practice. These encouraging impressive results pave the way for larger randomized clinical trials aimed at testing the efficacy of CMR to alleviate neuropathic pain in adults with SCI. Clinical Trial registration: ClinicalTrials.gov Identifier: NCT04706208. Funding: AIRP2-IND-30: Academic Investment Research Program (AIRP) University of Minnesota School of Medicine. National Center for Advancing Translational Sciences of the National Institutes of Health Award Number UL1TR002494; the Biotechnology Research Center: P41EB015894, the National Institute of Neurological Disorders & Stroke Institutional Center Core Grants to Support Neuroscience Research: P30 NS076408; and theHigh-Performancee Connectome Upgrade for Human 3T MR Scanner: 1S10OD017974.

18.
Hum Brain Mapp ; 44(6): 2620-2635, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36840728

RESUMO

Resting-state functional network connectivity (rsFNC) has shown utility for identifying characteristic functional brain patterns in individuals with psychiatric and mood disorders, providing a promising avenue for biomarker development. However, several factors have precluded widespread clinical adoption of rsFNC diagnostics, namely a lack of standardized approaches for capturing comparable and reproducible imaging markers across individuals, as well as the disagreement on the amount of data required to robustly detect intrinsic connectivity networks (ICNs) and diagnostically relevant patterns of rsFNC at the individual subject level. Recently, spatially constrained independent component analysis (scICA) has been proposed as an automated method for extracting ICNs standardized to a chosen network template while still preserving individual variation. Leveraging the scICA methodology, which solves the former challenge of standardized neuroimaging markers, we investigate the latter challenge of identifying a minimally sufficient data length for clinical applications of resting-state fMRI (rsfMRI). Using a dataset containing rsfMRI scans of individuals with schizophrenia and controls (M = 310) as well as simulated rsfMRI, we evaluated the robustness of ICN and rsFNC estimates at both the subject- and group-level, as well as the performance of diagnostic classification, with respect to the length of the rsfMRI time course. We found individual estimates of ICNs and rsFNC from the full-length (5 min) reference time course were sufficiently approximated with just 3-3.5 min of data (r = 0.85, 0.88, respectively), and significant differences in group-average rsFNC could be sufficiently approximated with even less data, just 2 min (r = 0.86). These results from the shorter clinical data were largely consistent with the results from validation experiments using longer time series from both simulated (30 min) and real-world (14 min) datasets, in which estimates of subject-level FNC were reliably estimated with 3-5 min of data. Moreover, in the real-world data we found rsFNC and ICN estimates generated across the full range of data lengths (0.5-14 min) more reliably matched those generated from the first 5 min of scan time than those generated from the last 5 min, suggesting increased influence of "late scan" noise factors such as fatigue or drowsiness may limit the reliability of FNC from data collected after 10+ min of scan time, further supporting the notion of shorter scans. Lastly, a diagnostic classification model trained on just 2 min of data retained 97%-98% classification accuracy relative to that of the full-length reference model. Our results suggest that, when decomposed with scICA, rsfMRI scans of just 2-5 min show good clinical utility without significant loss of individual FNC information of longer scan lengths.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Neuroimagem , Transtornos do Humor , Mapeamento Encefálico/métodos
19.
Psychiatry Res Neuroimaging ; 329: 111597, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36680843

RESUMO

This study examined associations between resting-state amplitude of low frequency fluctuations (ALFF) and negative symptoms represented by total scores, second-order dimension (motivation and pleasure, expressivity), and first-order domain (anhedonia, avolition, asociality, alogia, blunted affect) factor scores in schizophrenia (n = 57). Total negative symptom scores showed positive associations with ALFF in temporal and frontal brain regions. Negative symptom domain scores showed predominantly stronger associations with regional ALFF compared to total scores, suggesting domain scores may better map to neural signatures than total scores. Improving our understanding of the neuropathology underlying negative symptoms may aid in addressing this unmet therapeutic need in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Anedonia , Encéfalo/diagnóstico por imagem , Transtornos do Humor , Motivação
20.
Behav Res Methods ; 55(8): 4260-4268, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36526886

RESUMO

Mobile technologies can be used for behavioral assessments to associate changes in behavior with environmental context and its influence on mental health and disease. Research on real-time motor control with a joystick, analyzed using a computational proportion-derivative (PD) modeling approach, has shown that model parameters can be estimated with high reliability and are related both to self-reported fear and to brain structures important for affective regulation, such as the anterior cingulate cortex. Here we introduce a mobile version of this paradigm, the rapid assessment of motor processing (RAMP) paradigm, and show that it provides robust, reliable, and accessible behavioral measurements relevant to mental health. A smartphone version of a previous joystick sensorimotor task was developed in which participants control a virtual car to a stop sign and stop. A sample of 89 adults performed the task, with 66 completing a second retest session. A PD modeling approach was applied to compute Kp (drive) and Kd (damping) parameters. Both Kp and Kd exhibited high test-retest reliabilities (ICC .81 and .78, respectively). Replicating a previous finding from a different sample with the joystick version of the task, both Kp and Kd were negatively associated with self-reported fear. The RAMP paradigm, a mobile sensorimotor assessment, can be used to assess drive and damping during motor control, which is robustly associated with subjective affect. This paradigm could be useful for examining dynamic contextual modulation of affect-related processing, which could improve assessment of the effects of interventions for psychiatric disorders in a real-world context.


Assuntos
Encéfalo , Medo , Adulto , Humanos , Reprodutibilidade dos Testes , Encéfalo/fisiologia , Autorrelato , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA