Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(20): 12639-12671, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718193

RESUMO

Since the discovery of ferromagnetic nanoparticles Fe3O4 that exhibit enzyme-like activity in 2007, the research on nanoenzymes has made significant progress. With the in-depth study of various nanoenzymes and the rapid development of related nanotechnology, nanoenzymes have emerged as a promising alternative to natural enzymes. Within nanozymes, there is a category of metal-based single-atom nanozymes that has been rapidly developed due to low cast, convenient preparation, long storage, less immunogenicity, and especially higher efficiency. More importantly, single-atom nanozymes possess the capacity to scavenge reactive oxygen species through various mechanisms, which is beneficial in the tissue repair process. Herein, this paper systemically highlights the types of metal single-atom nanozymes, their catalytic mechanisms, and their recent applications in tissue repair. The existing challenges are identified and the prospects of future research on nanozymes composed of metallic nanomaterials are proposed. We hope this review will illuminate the potential of single-atom nanozymes in tissue repair, encouraging their sequential clinical translation.


Assuntos
Enzimas , Humanos , Enzimas/química , Enzimas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Catálise , Nanoestruturas/química , Nanotecnologia
2.
Adv Mater ; : e2311313, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483292

RESUMO

Conventional gas plasma treatments are crucial for functionalizing materials in biomedical applications, but have limitations hindering their broader use. These methods require exposure to reactive media under vacuum conditions, rendering them unsuitable for substrates that demand aqueous environments, such as proteins and hydrogels. In addition, complex geometries are difficult to treat, necessitating extensive customization for each material and shape. To address these constraints, an innovative approach employing plasma polymer nanoparticles (PPN) as a versatile functionalization tool is proposed. PPN share similarities with traditional plasma polymer coatings (PPC) but offer unique advantages: compatibility with aqueous systems, the ability to modify complex geometries, and availability as off-the-shelf products. Robust immobilization of PPN on various substrates, including synthetic polymers, proteins, and complex hydrogel structures is demonstrated in this study. This results in substantial improvements in surface hydrophilicity. Materials functionalization with arginylglycylaspartic acid (RGD)-loaded PPN significantly enhances cell attachment, spreading, and substrate coverage on inert scaffolds compared to passive RGD coatings. Improved adhesion to complex geometries and subsequent differentiation following growth factor exposure is also demonstrated. This research introduces a novel substrate functionalization approach that mimics the outcomes of plasma coating technology but vastly expands its applicability, promising advancements in biomedical materials and devices.

3.
Biofabrication ; 16(2)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373325

RESUMO

The delivery of oxygen within tissue engineered constructs is essential for cell survivability; however, achieving this within larger biofabricated constructs poses a significant challenge. Efforts to overcome this limitation often involve the delivery of synthetic oxygen generating compounds. The application of some of these compounds is problematic for the biofabrication of living tissues due to inherent issues such as cytotoxicity, hyperoxia and limited structural stability due to oxygen inhibition of radical-based crosslinking processes. This study aims to develop an oxygen delivering system relying on natural-derived components which are cytocompatible, allow for photopolymerization and advanced biofabrication processes, and improve cell survivability under hypoxia (1% O2). We explore the binding of human hemoglobin (Hb) as a natural oxygen deposit within photopolymerizable allylated gelatin (GelAGE) hydrogels through the spontaneous complex formation of Hb with negatively charged biomolecules (heparin, hyaluronic acid, and bovine serum albumin). We systematically study the effect of biomolecule inclusion on cytotoxicity, hydrogel network properties, Hb incorporation efficiency, oxygen carrying capacity, cell viability, and compatibility with 3D-bioassembly processes within melt electrowritten (MEW) scaffolds. All biomolecules were successfully incorporated within GelAGE hydrogels, displaying controllable mechanical properties and cytocompatibility. Results demonstrated efficient and tailorable Hb incorporation within GelAGE-Heparin hydrogels. The developed system was compatible with microfluidics and photopolymerization processes, allowing for the production of GelAGE-Heparin-Hb spheres. Hb-loaded spheres were assembled into MEW polycaprolactone scaffolds, significantly increasing the local oxygen levels. Ultimately, cells within Hb-loaded constructs demonstrated good cell survivability under hypoxia. Taken together, we successfully developed a hydrogel system that retains Hb as a natural oxygen deposit post-photopolymerization, protecting Hb from free-radical oxidation while remaining compatible with biofabrication of large constructs. The developed GelAGE-Heparin-Hb system allows for physoxic oxygen delivery and thus possesses a vast potential for use across broad tissue engineering and biofabrication strategies to help eliminate cell death due to hypoxia.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Hidrogéis/farmacologia , Hidrogéis/química , Hipóxia , Oxigênio , Heparina/farmacologia
4.
Trends Biotechnol ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320911

RESUMO

Microcarrier expansion systems show exciting potential to revolutionise mesenchymal stromal cell (MSC)-based clinical therapies by providing an opportunity for economical large-scale expansion of donor- and patient-derived cells. The poor reproducibility and efficiency of cell expansion on commercial polystyrene microcarriers have driven the development of novel microcarriers with tuneable physical, mechanical, and cell-instructive properties. These new microcarriers show innovation toward improving cell expansion outcomes, although their limited biological characterisation and compatibility with dynamic culture systems suggest the need to realign the microcarrier design pathway. Clear headway has been made toward developing infrastructure necessary for scaling up these technologies; however, key challenges remain in characterising the wholistic effects of microcarrier properties on the biological fate and function of expanded MSCs.

5.
Mater Today Bio ; 25: 101004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38420142

RESUMO

Extracellular matrix (ECM) stiffening is a common occurrence during the progression of many diseases, such as breast cancer. To accurately mimic the pathophysiological context of disease within 3D in vitro models, there is high demand for smart biomaterials which replicate the dynamic and temporal mechanical cues of diseased states. This study describes a preclinical disease model, using breast cancer as an example, which replicates the dynamic plasticity of the tumour microenvironment by incorporating temporal (3-week progression) biomechanical cues within a tissue-specific hydrogel microenvironment. The composite hydrogel formulation, integrating adipose-derived decellularised ECM (AdECM) and silk fibroin, was initially crosslinked using a visible light-mediated system, and then progressively stiffened through spontaneous secondary structure interactions inherent between the polymer chains (∼10-15 kPa increase, with a final stiffness of 25 kPa). When encapsulated and cultured in vitro, MCF-7 breast cancer cells initially formed numerous, large spheroids (>1000 µm2 in area), however, with progressive temporal stiffening, cells demonstrated growth arrest and underwent phenotypic changes resulting in intratumoral heterogeneity. Unlike widely-investigated static mechanical models, this stiffening hydrogel allowed for progressive phenotypic changes to be observed, and fostered the development of mature organoid-like spheroids, which mimicked both the organisation and acinar-structures of mature breast epithelium. The spheroids contained a central population of cells which expressed aggressive cellular programs, evidenced by increased fibronectin expression and reduction of E-cadherin. The phenotypic heterogeneity observed using this model is more reflective of physiological tumours, demonstrating the importance of establishing temporal cues within preclinical models in future work. Overall, the developed model demonstrated a novel strategy to uncouple ECM biomechanical properties from the cellular complexities of the disease microenvironment and offers the potential for wide applicability in other 3D in vitro disease models through addition of tissue-specific dECM materials.

6.
Adv Biol (Weinh) ; 8(2): e2300448, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953659

RESUMO

For effective translation of research from tissue engineering and regenerative medicine domains, the cell-instructive extracellular matrix (ECM) of specific tissues must be accurately realized. As adipose tissue is gaining traction as a biomaterial for soft tissue reconstruction, with highly variable clinical outcomes obtained, a quantitative investigation of the adipose tissue matrisome is overdue. In this study, the human adipose tissue matrisome is profiled using quantitative sequential windowed acquisition of all theoretical fragment ion spectra - mass spectrometry (SWATH-MS) proteomics across a cohort of 13 fat-grafting patients, to provide characterization of ECM proteins within the tissue, and to understand human population variation. There are considerable differences in the expression of matrisome proteins across the patient cohort, with age and lipoaspirate collection technique contributing to the greatest variation across the core matrisome. A high abundance of basement membrane proteins (collagen IV and heparan sulfate proteoglycan) is detected, as well as fibrillar collagens I and II, reflecting the hierarchical structure of the tissue. This study provides a comprehensive proteomic evaluation of the adipose tissue matrisome and contributes to an enhanced understanding of the influence of the matrisome in adipose-related pathologies by providing a healthy reference cohort and details an experimental pipeline that can be further exploited for future biomaterial development.


Assuntos
Matriz Extracelular , Proteômica , Humanos , Proteômica/métodos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/metabolismo , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/metabolismo , Tecido Adiposo/química , Tecido Adiposo/metabolismo
7.
Macromol Biosci ; : e2300457, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38035637

RESUMO

Cell encapsulation within three-dimensional hydrogels is a promising approach to mimic tissues. However, true biomimicry of the intricate microenvironment, biophysical and biochemical gradients, and the macroscale hierarchical spatial organizations of native tissues is an unmet challenge within tissue engineering. This review provides an overview of the macromolecular chemistries that have been applied toward the design of cell-friendly hydrogels, as well as their application toward controlling biophysical and biochemical bulk and gradient properties of the microenvironment. Furthermore, biofabrication technologies provide the opportunity to simultaneously replicate macroscale features of native tissues. Biofabrication strategies are reviewed in detail with a particular focus on the compatibility of these strategies with the current macromolecular toolkit described for hydrogel design and the challenges associated with their clinical translation. This review identifies that the convergence of the ever-expanding macromolecular toolkit and technological advancements within the field of biofabrication, along with an improved biological understanding, represents a promising strategy toward the successful tissue regeneration.

8.
Biomater Sci ; 12(1): 134-150, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37933486

RESUMO

Synthetic polymers, such as poly(vinyl alcohol) (PVA), are popular biomaterials for the fabrication of hydrogels for tissue engineering and regenerative medicine (TERM) applications, as they provide excellent control over the physico-chemical properties of the hydrogel. However, their bioinert nature is known to limit cell-biomaterial interactions by hindering cell infiltration, blood vessel recruitment and potentially limiting their integration with the host tissue. Efforts in the field have therefore focused on increasing the biofunctionality of synthetic hydrogels, without limiting the advantages associated with their tailorability and controlled release capacity. The aim of this study was to investigate the suitability of pristine gelatin to enhance the biofunctionality of tyraminated PVA (PVA-Tyr) hydrogels, by promoting cell infiltration and host blood vessel recruitment for TERM applications. Pure PVA-Tyr hydrogels and PVA-Tyr hydrogels incorporated with vascular endothelial growth factor (VEGF), a well-known pro-angiogenic stimulus, were used for comparison. Incorporating increasing concentrations of VEGF (0.01-10 µg mL-1) or gelatin (0.01-5 wt%) did not influence the physical properties of PVA-Tyr hydrogels. However, their presence within the polymer network (>0.1 µg mL-1 VEGF and >0.1 wt% gelatin) promoted endothelial cell interactions with the hydrogels. The covalent binding of unmodified gelatin or VEGF to the PVA-Tyr network did not hamper their inherent bioactivity, as they both promoted angiogenesis in a chick chorioallantoic membrane (CAM) assay, performing comparably with the unbound VEGF control. When the PVA-Tyr hydrogels were implanted subcutaneously in mice, it was observed that cell infiltration into the hydrogels was possible in the absence of gelatin or VEGF at 1- or 3-weeks post-implantation, highlighting a clear difference between in vitro an in vivo cell-biomaterial interaction. Nevertheless, the presence of gelatin or VEGF was necessary to enhance blood vessel recruitment and infiltration, although no significant difference was observed between these two biological molecules. Overall, this study highlights the potential of gelatin as a standalone pro-angiogenic cue to enhance biofunctionality of synthetic hydrogels and provides promise for their use in a variety of TERM applications.


Assuntos
Álcool de Polivinil , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Álcool de Polivinil/química , Gelatina/química , Engenharia Tecidual , Hidrogéis/química , Polímeros/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Etanol
9.
Adv Healthc Mater ; 12(31): e2301506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37670531

RESUMO

The tumor microenvironment presents spatiotemporal shifts in biomechanical properties with cancer progression. Hydrogel biomaterials like GelAGE offer the stiffness tuneability to recapitulate dynamic changes in tumor tissues by altering photo-energy exposures. Here, a tuneable hydrogel with spatiotemporal control of stiffness and mesh-network is developed. The volume of MCF7 spheroids encapsulated in a linear stiffness gradient demonstrates an inverse relationship with stiffness (p < 0.0001). As spheroids are exposed to increased crosslinking (stiffer) and greater mechanical confinement, spheroid stiffness increases. Protein expression (TRPV4, ß1 integrin, E-cadherin, and F-actin) decreases with increasing stiffness while showing strong correlations to spheroid volume (r2  > 0.9). To further investigate the role of volume, MCF7 spheroids are grown in a soft matrix for 5 days prior to a second polymerisation which presents a stiffness gradient to equally expanded spheroids. Despite being exposed to variable stiffness, these spheroids show even protein expression, confirming volume as a key regulator. Overall, this work showcases the versatility of GelAGE and demonstrates volume expansion as a key regulator of 3D mechanosensation in MCF7 breast cancer spheroids. This platform has the potential to further investigation into the role of stiffness and dimensionality in 3D spheroid culture for other types of cancers and diseases.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Esferoides Celulares/metabolismo , Hidrogéis , Actinas , Microambiente Tumoral
10.
Adv Healthc Mater ; 12(30): e2300977, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699146

RESUMO

Volumetric bioprinting (VBP) is a light-based 3D printing platform, which recently prompted a paradigm shift for additive manufacturing (AM) techniques considering its capability to enable the fabrication of complex cell-laden geometries in tens of seconds with high spatiotemporal control and pattern accuracy. A flexible allyl-modified gelatin (gelAGE)-based photoclick resin is developed in this study to fabricate matrices with exceptionally soft polymer networks (0.2-1.0 kPa). The gelAGE-based resin formulations are designed to exploit the fast thiol-ene crosslinking in combination with a four-arm thiolated polyethylene glycol (PEG4SH) in the presence of a photoinitiator. The flexibility of the gelAGE biomaterial platform allows one to tailor its concentration spanning from 2.75% to 6% and to vary the allyl to thiol ratio without hampering the photocrosslinking efficiency. The thiol-ene crosslinking enables the production of viable cell-material constructs with a high throughput in tens of seconds. The suitability of the gelAGE-based resins is demonstrated by adipogenic differentiation of adipose-derived stromal cells (ASC) after VBP and by the printing of more fragile adipocytes as a proof-of-concept. Taken together, this study introduces a soft photoclick resin which paves the way for volumetric printing applications toward soft tissue engineering.


Assuntos
Bioimpressão , Engenharia Tecidual , Engenharia Tecidual/métodos , Gelatina , Bioimpressão/métodos , Hidrogéis , Impressão Tridimensional , Compostos de Sulfidrila , Alicerces Teciduais
11.
Adv Sci (Weinh) ; 10(26): e2300538, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424046

RESUMO

Visible light-mediated cross-linking has utility for enhancing the structural capacity and shape fidelity of laboratory-based polymers. With increased light penetration and cross-linking speed, there is opportunity to extend future applications into clinical spheres. This study evaluated the utility of a ruthenium/sodium persulfate photocross-linking system for increasing structural control in heterogeneous living tissues as an example, focusing on unmodified patient-derived lipoaspirate for soft tissue reconstruction. Freshly-isolated tissue is photocross-linked, then the molar abundance of dityrosine bonds is measured using liquid chromatography tandem mass spectrometry and the resulting structural integrity assessed. The cell function and tissue survival of photocross-linked grafts is evaluated ex vivo and in vivo, with tissue integration and vascularization assessed using histology and microcomputed tomography. The photocross-linking strategy is tailorable, allowing progressive increases in the structural fidelity of lipoaspirate, as measured by a stepwise reduction in fiber diameter, increased graft porosity and reduced variation in graft resorption. There is an increase in dityrosine bond formation with increasing photoinitiator concentration, and tissue homeostasis is achieved ex vivo, with vascular cell infiltration and vessel formation in vivo. These data demonstrate the capability and applicability of photocrosslinking strategies for improving structural control in clinically-relevant settings, potentially achieving more desirable patient outcomes using minimal manipulation in surgical procedures.


Assuntos
Luz , Humanos , Microtomografia por Raio-X
12.
Tissue Eng Part A ; 29(15-16): 449-459, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37171123

RESUMO

We hypothesized that a combined growth factor hydrogel would improve chronic rotator cuff tear healing in a rat and sheep model. Insulin-like growth factor 1, transforming growth factor ß1, and parathyroid hormone were combined into a tyraminated poly-vinyl-alcohol (PVA-Tyr) hydrogel and applied directly at the enthesis. In total, 30 Sprague-Dawley rats and 16 Romney ewes underwent unilateral rotator cuff tenotomy and then delayed repairs were performed after 3-4 weeks. The animals were divided into a control group (repair alone) and treatment group. The rotator cuffs were harvested at 12 weeks after surgery for biomechanical and histological analyses of the repair site. In the rat model, the stress at failure and Young's modulus were higher in the treatment group in comparison with the control group (73% improvement, p = 0.010 and 56% improvement, p = 0.028, respectively). Histologically, the repaired entheses in the treatment group demonstrated improved healing with higher semi-quantitative scores (10.1 vs. 6.55 of 15, p = 0.032). In the large animal model, there was no observable treatment effect. This PVA-Tyr bound growth factor system holds promise for improving rotator cuff healing. However, our approach was not scalable from a small to a large animal model. Further tailoring of this growth factor delivery system is still required. Level of Evidence: Basic Science Study; Biomechanics and Histology; Animal Model Impact Statement Previous studies using single-growth factor treatment to improve enthesis healing after rotator cuff repair have reported promising, but inconsistent results. A novel approach is to combine multiple growth factors using controlled-release hydrogels that mimic the normal healing process. In this study, we report that a combined growth factor hydrogel can improve the histological quality and strength of rotator cuff repair in a rat chronic tear model. This novel hydrogel growth factor treatment has the potential to be used in human clinical applications to improve healing after rotator cuff repair.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Ratos , Animais , Feminino , Ovinos , Humanos , Manguito Rotador/cirurgia , Cicatrização , Ratos Sprague-Dawley , Hidrogéis/farmacologia , Lesões do Manguito Rotador/cirurgia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fenômenos Biomecânicos
13.
Polymers (Basel) ; 15(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112072

RESUMO

Cell cultures of dispersed cells within hydrogels depict the interaction of the cell-extracellular matrix (ECM) in 3D, while the coculture of different cells within spheroids combines both the effects of cell-cell and cell-ECM interactions. In this study, the cell co-spheroids of human bone mesenchymal stem cells/human umbilical vein endothelial cells (HBMSC/HUVECs) are prepared with the assistance of a nanopattern, named colloidal self-assembled patterns (cSAPs), which is superior to low-adhesion surfaces. A phenol-modified gelatin/hyaluronan (Gel-Ph/HA-Ph) hydrogel is used to encapsulate the multicellular spheroids and the constructs are photo-crosslinked using blue light. The results show that Gel-Ph/HA-Ph hydrogels with a 5%-to-0.3% ratio have the best properties. Cells in HBMSC/HUVEC co-spheroids are more favorable for osteogenic differentiation (Runx2, ALP, Col1a1 and OPN) and vascular network formation (CD31+ cells) compared to HBMSC spheroids. In a subcutaneous nude mouse model, the HBMSC/HUVEC co-spheroids showed better performance than HBMSC spheroids in angiogenesis and the development of blood vessels. Overall, this study paves a new way for using nanopatterns, cell coculturing and hydrogel technology for the generation and application of multicellular spheroids.

14.
Biofabrication ; 15(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723633

RESUMO

The integration of light-driven technologies into biofabrication has revolutionized the field of tissue engineering and regenerative medicine, with numerous breakthroughs in the last few years. Light-based bioprinting approaches (lithography, multiphoton and volumetric bioprinting) have shown the potential to fabricate large scale tissue engineering constructs of high resolution, with great flexibility and control over the cellular organization. Given the unprecedented degree of freedom in fabricating convoluted structures, key challenges in regenerative medicine, such as introducing complex channels and pre-vascular networks in 3D constructs have also been addressed. Light has also been proven as a powerful tool, leading to novel photo-chemistry in designing bioinks, but also able to impart spatial-temporal control over cellular functions through photo-responsive chemistry. For instance, smart constructs able to undergo remotely controlled shape changes, stiffening, softening and degradation can be produced. The non-invasive nature of light stimulation also enables to trigger such responses post-fabrication, during the maturation phase of a construct. Such unique ability can be used to mimic the dynamic processes occurring in tissue regeneration, as well as in disease progression and degenerative processes in vivo. Bringing together these novel multidisciplinary expertise, the present Special Issue aims to discuss the most recent trends, strategies and novel light-based technologies in the field of biofabrication. These include: 1) using light-based bioprinting to develop in vitro models for drug screening, developmental biology models, disease models, and also functional tissues for implantation; 2) novel light-based biofabrication technologies; 3) development of new photo-responsive bioinks or biomaterial inks.


Assuntos
Bioimpressão , Engenharia Tecidual , Medicina Regenerativa , Materiais Biocompatíveis , Tecnologia , Impressão Tridimensional , Alicerces Teciduais/química
16.
Trends Biotechnol ; 41(3): 262-263, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460489

RESUMO

Lithography bioprinting can fabricate constructs with high resolution for potential use in tissue engineering applications. Seminal work by Grigoryan and colleagues developed bioresins with precise control over the x, y, and z-planes during lithography bioprinting and applied this technique to fabricating physiologically biomimetic alveolar lung models.


Assuntos
Bioimpressão , Bioimpressão/métodos , Engenharia Tecidual/métodos , Biomimética , Impressão Tridimensional , Alicerces Teciduais
17.
Adv Healthc Mater ; 11(24): e2202934, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541722
18.
ACS Appl Mater Interfaces ; 14(28): 31551-31566, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35793155

RESUMO

Biofunctionalization of silk biomaterial surfaces with extracellular matrix (ECM) molecules, cell binding peptides, or growth factors is important in a range of applications, including tissue engineering and development of implantable medical devices. Passive adsorption is the most common way to immobilize molecules of interest on preformed silk biomaterials but can lead to random molecular orientations and displacement from the surface, limiting their applications. Herein, we developed techniques for covalent immobilization of biomolecules using enzyme- or photoinitiated formation of dityrosine bonds between the molecule of interest and silk. Using recombinantly expressed domain V of the human basement membrane proteoglycan perlecan (rDV) as a model molecule, we demonstrated that rDV can be covalently immobilized via dityrosine cross-linking without the need to modify rDV or silk biomaterials. Dityrosine-based immobilization resulted in a different molecular orientation to passively absorbed rDV with less C- and N-terminal region exposure on the surface. Dityrosine-based immobilization supported functional rDV immobilization where immobilized rDV supported endothelial cell adhesion, spreading, migration, and proliferation. These results demonstrate the utility of dityrosine-based cross-linking in covalent immobilization of tyrosine-containing molecules on silk biomaterials in the absence of chemical modification, adding a simple and accessible technique to the silk biofunctionalization toolbox.


Assuntos
Materiais Biocompatíveis , Seda , Adesão Celular , Humanos , Seda/química , Tirosina/análogos & derivados , Tirosina/química
19.
J Funct Biomater ; 13(2)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35466223

RESUMO

Epigenetic approaches using the histone deacetylase 2 and 3 inhibitor-MI192 have been reported to accelerate stem cells to form mineralised tissues. Gelatine methacryloyl (GelMA) hydrogels provide a favourable microenvironment to facilitate cell delivery and support tissue formation. However, their application for bone repair is limited due to their low mechanical strength. This study aimed to investigate a GelMA hydrogel reinforced with a 3D printed scaffold to support MI192-induced human bone marrow stromal cells (hBMSCs) for bone formation. Cell culture: The GelMA (5 wt%) hydrogel supported the proliferation of MI192-pre-treated hBMSCs. MI192-pre-treated hBMSCs within the GelMA in osteogenic culture significantly increased alkaline phosphatase activity (p ≤ 0.001) compared to control. Histology: The MI192-pre-treated group enhanced osteoblast-related extracellular matrix deposition and mineralisation (p ≤ 0.001) compared to control. Mechanical testing: GelMA hydrogels reinforced with 3D printed poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) scaffolds exhibited a 1000-fold increase in the compressive modulus compared to the GelMA alone. MI192-pre-treated hBMSCs within the GelMA-PEGT/PBT constructs significantly enhanced extracellular matrix collagen production and mineralisation compared to control (p ≤ 0.001). These findings demonstrate that the GelMA-PEGT/PBT construct provides enhanced mechanical strength and facilitates the delivery of epigenetically-activated MSCs for bone augmentation strategies.

20.
Aging Dis ; 13(2): 491-520, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35371605

RESUMO

Dyslipidemia, characterized by a high level of lipids (cholesterol, triglycerides, or both), can increase the risk of developing and progressing atherosclerosis. As atherosclerosis progresses, the number and severity of aterial plagues increases with greater risk of myocardial infarction, a major contributor to cardiovascular mortality. Atherosclerosis progresses in four phases, namely endothelial dysfunction, fatty streak formation, lesion progression and plaque rupture, and eventually thrombosis and arterial obstruction. With greater understanding of the pathological processes underlying atherosclerosis, researchers have identified that lipoproteins play a significant role in the development of atherosclerosis. In particular, apolipoprotein B (apoB)-containing lipoproteins have been shown to associate with atherosclerosis. Oxidized low-density lipoproteins (ox-LDLs) also contribute to the progression of atherosclerosis whereas high-density lipoproteins (HDL) contribute to the removal of cholesterol from macrophages thereby inhibiting the formation of foam cells. Given these known associations, lipoproteins may have potential as biomarkers for predicting risk associated with atherosclerotic plaques or may be targets as novel therapeutic agents. As such, the rapid development of drugs targeting lipoprotein metabolism may lead to novel treatments for atherosclerosis. A comprehensive review of lipoprotein function and their role in atherosclerosis, along with the latest development of lipoprotein targeted treatment, is timely. This review focuses on the functions of different lipoproteins and their involvement in atherosclerosis. Further, diagnostic and therapeutic potential are highlighted giving insight into novel lipoprotein-targetted approaches to treat atherosclerosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA