Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(20): e112630, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37712330

RESUMO

Two major mechanisms safeguard genome stability during mitosis: the mitotic checkpoint delays mitosis until all chromosomes have attached to microtubules, and the kinetochore-microtubule error-correction pathway keeps this attachment process free from errors. We demonstrate here that the optimal strength and dynamics of these processes are set by a kinase-phosphatase pair (PLK1-PP2A) that engage in negative feedback from adjacent phospho-binding motifs on the BUB complex. Uncoupling this feedback to skew the balance towards PLK1 produces a strong checkpoint, hypostable microtubule attachments and mitotic delays. Conversely, skewing the balance towards PP2A causes a weak checkpoint, hyperstable microtubule attachments and chromosome segregation errors. These phenotypes are associated with altered BUB complex recruitment to KNL1-MELT motifs, implicating PLK1-PP2A in controlling auto-amplification of MELT phosphorylation. In support, KNL1-BUB disassembly becomes contingent on PLK1 inhibition when KNL1 is engineered to contain excess MELT motifs. This elevates BUB-PLK1/PP2A complex levels on metaphase kinetochores, stabilises kinetochore-microtubule attachments, induces chromosome segregation defects and prevents KNL1-BUB disassembly at anaphase. Together, these data demonstrate how a bifunctional PLK1/PP2A module has evolved together with the MELT motifs to optimise BUB complex dynamics and ensure accurate chromosome segregation.


Assuntos
Cinetocoros , Pontos de Checagem da Fase M do Ciclo Celular , Humanos , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Fosforilação , Microtúbulos/metabolismo , Mitose , Células HeLa
2.
Sci Rep ; 12(1): 20902, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463288

RESUMO

Breast cancer (BC) cell lines are useful experimental models to understand cancer biology. Yet, their relevance to modelling cancer remains unclear. To better understand the tumour-modelling efficacy of cell lines, we performed RNA-seq analyses on a combined dataset of 2D and 3D cultures of tumourigenic MCF7 and non-tumourigenic MCF10A. To our knowledge, this was the first RNA-seq dataset comprising of 2D and 3D cultures of MCF7 and MCF10A within the same experiment, which facilitates the elucidation of differences between MCF7 and MCF10A across culture types. We compared the genes and gene sets distinguishing MCF7 from MCF10A against separate RNA-seq analyses of clinical luminal A (LumA) and normal samples from the TCGA-BRCA dataset. Among the 1031 cancer-related genes distinguishing LumA from normal samples, only 5.1% and 15.7% of these genes also distinguished MCF7 from MCF10A in 2D and 3D cultures respectively, suggesting that different genes drive cancer-related differences in cell lines compared to clinical BC. Unlike LumA tumours which showed increased nuclear division-related gene expression compared to normal tissue, nuclear division-related gene expression in MCF7 was similar to MCF10A. Moreover, although LumA tumours had similar cell adhesion-related gene expression compared to normal tissues, MCF7 showed reduced cell adhesion-related gene expression compared to MCF10A. These findings suggest that MCF7 and MCF10A cell lines were limited in their ability to model cancer-related processes in clinical LumA tumours.


Assuntos
Divisão do Núcleo Celular , Transcriptoma , Humanos , Adesão Celular/genética , Células MCF-7 , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA