Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 4(18): 2832-41, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26616471

RESUMO

Cell backpacks, or micron-scale patches of a few hundred nanometers in thickness fabricated by layer-by-layer (LbL) assembly, are potentially useful vehicles for targeted drug delivery on the cellular level. In this work, echogenic liposomes (ELIPs) containing the anticancer drug doxorubicin (DOX) are embedded into backpacks through electrostatic interactions and LbL assembly. Poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA)n , and poly(diallyldimethylammonium chloride)/poly(styrene sulfonate) (PDAC/SPS)n film systems show the greatest ELIP incorporation of the films studied while maintaining the structural integrity of the vesicles. The use of ELIPs for drug encapsulation into backpacks facilitates up to three times greater DOX loading compared to backpacks without ELIPs. Cytotoxicity studies reveal that monocyte backpack conjugates remain viable even after 72 h, demonstrating promise as drug delivery vehicles. Because artificial vesicles can load many different types of drugs, ELIP containing backpacks offer a unique versatility for broadening the range of possible applications for cell backpacks.


Assuntos
Lipossomos/farmacologia , Monócitos/citologia , Animais , Cátions , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Recuperação de Fluorescência Após Fotodegradação , Lipossomos/ultraestrutura , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula
2.
Biomacromolecules ; 15(8): 3093-8, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-24964165

RESUMO

The layer-by-layer (LbL) assembly of thin films on surfaces has proven to be an extremely useful technology for uses ranging from optics to biomedical applications. Releasing these films from the substrate to generate so-called free-standing multilayer films opens a new set of applications. Current approaches to generating such materials are limited because they can be cytotoxic, difficult to scale up, or have undesirable side reactions on the material. In this work, a new sacrificial thin film system capable of chemically triggered dissolution at physiological pH of 7.4 is described. The film was created through LbL assembly of bovine submaxillary mucin (BSM) and the lectin jacalin (JAC) for a (BSM/JAC) multilayer system, which remains stable over a wide pH range (pH 3-9) and at high ionic strength (up to 5 M NaCl). This stability allows for subsequent LbL assembly of additional films in a variety of conditions, which could be released from the substrate by incubation in the presence of a competitive inhibitor sugar, melibiose, which selectively disassembles the (BSM/JAC) section of the film. This novel multilayer system was then applied to generate free-standing, 7 µm diameter, circular ultrathin films, which can be attached to a cell surface as a "backpack". A critical thickness of about 100 nm for the (BSM/JAC) film was required to release the backpacks from the glass substrate, after incubation in melibiose solution at 37 °C for 1 h. Upon their release, backpacks were subsequently attached to murine monocytes without cytotoxicity, thereby demonstrating the compatibility of this mucin-based release system with living cells.


Assuntos
Carboidratos/química , Lectinas/química , Mucinas/química , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Vidro/química , Concentração de Íons de Hidrogênio , Melibiose/química , Camundongos , Monócitos/citologia , Monócitos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA