Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766945

RESUMO

Mirrors for atoms and molecules are essential tools for matter-wave optics with neutral particles. Their realization has required either a clean and atomically smooth crystal surface, sophisticated tailored electromagnetic fields, nanofabrication, or particle cooling because of the inherently short de Broglie wavelengths and strong interactions of atoms with surfaces. Here, we demonstrate reflection of He atoms from inexpensive, readily available, and robust gratings designed for light waves. Using different types of blazed gratings with different periods, we study how microscopic and macroscopic grating properties affect the mirror performance. A holographic grating with 417 nm period shows reflectivity up to 47% for He atoms, demonstrating that commercial gratings can serve as mirrors for thermal energy atoms and molecules. We also observe reflection of He2 and He3 which implies that the grating might also function as a mirror for other breakable particles that, under typical conditions, do not scatter nondestructively from a solid surface such as, e.g., metastable atoms or antihydrogen atoms.

2.
RSC Adv ; 14(11): 7720-7727, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38449823

RESUMO

Chemical warfare agents (CWAs) pose a persistent threat to human safety, and bis(2-chloroethyl) sulfide, or sulfur mustard (SM) is one of the most dangerous substances and is able to cause serious harm. Detecting SM gas is vital, but current methods have high-temperature requirements and limited selectivity, mainly because of the lack of CWA receptor development, and this makes them challenging to use. To address this issue, we present a trisaryl phosphoric triamide-based resin receptor that preferentially interacts with a SM simulant 2-chloroethyl ethyl sulfide (2-CEES) through dipole interactions. The receptor was synthesized through a facile process using an amine and a triethyl phosphate and the properties of its coating were enhanced using epoxy chemistry. The receptor's superior triamide structure was evaluated using a quartz crystal microbalance and reactivity was confirmed by observing the variations in reactivity according to the number of phosphoramides. The receptor showed better reactivity to 2-CEES vapor than to the known poly(epichlorohydrin) and showed selectivity to other volatile organic compounds. Moreover, its durability was evident even 30 days post-coating. The applicability of this receptor extends to array sensors, sound acoustic wave sensors, and chemo-resistive and chemo-capacitive sensors, and it promises advances in chemical warfare agent detection.

3.
RSC Adv ; 13(46): 32487-32491, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37928860

RESUMO

Micro/nanolenses play a crucial role in optics and spectroscopy, but the effect of interference patterns within each lens has been largely unexplored. Herein, we investigate modulation of Raman scattering by the interference within a single micro/nanolens of a hygroscopic salt. Lenses having two different diameter (d) ranges, d > 2 µm and d ∼1 µm, are placed on a silicon substrate, followed by collection of a Raman intensity map of the silicon peak. Lenses with d > 2 µm show dark and bright circular fringes in the Raman map, resembling the Newton's rings formed by optical interference. In the smaller lenses (d ∼1 µm), the map yields only a single peak at the center, representing either an intensity maximum or minimum. In both diameter ranges, whether the Raman intensity is enhanced or suppressed is determined by interference conditions, such as wavelength of the excitation laser or thickness of the SiO2 layer. The interference in salt micro/nanolenses finds applications in local modulation of Raman scattering of a nanoscale object, as demonstrated in individual single-walled carbon nanotubes decorated with the salt lenses.

4.
Nanomaterials (Basel) ; 13(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570518

RESUMO

Toxic industrial chemicals (TICs), when accidentally released into the workplace or environment, often form a gaseous mixture that complicates detection and mitigation measures. However, most of the existing gas sensors are unsuitable for detecting such mixtures. In this study, we demonstrated the detection and identification of gaseous mixtures of TICs using a chemiresistor array of single-walled carbon nanotubes (SWCNTs). The array consists of three SWCNT chemiresistors coated with different molecular/ionic species, achieving a limit of detection (LOD) of 2.2 ppb for ammonia (NH3), 820 ppb for sulfur dioxide (SO2), and 2.4 ppm for ethylene oxide (EtO). By fitting the concentration-dependent sensor responses to an adsorption isotherm, we extracted parameters that characterize each analyte-coating combination, including the proportionality and equilibrium constants for adsorption. Principal component analysis confirmed that the sensor array detected and identified mixtures of two TIC gases: NH3/SO2, NH3/EtO, and SO2/EtO. Exposing the sensor array to three TIC mixtures with various EtO/SO2 ratios at a fixed NH3 concentration showed an excellent correlation between the sensor response and the mixture composition. Additionally, we proposed concentration ranges within which the sensor array can effectively detect the gaseous mixtures. Being highly sensitive and capable of analyzing both individual and mixed TICs, our gas sensor array has great potential for monitoring the safety and environmental effects of industrial chemical processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA