Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917341

RESUMO

Here, we report an electrochemiluminescence (ECL)-based approach for imaging of local photoelectrochemical processes on hematite in a spatially and temporally controlled manner. The local processes were guided by flexible and dynamic light illumination, not requiring any prepatterned conductive features or photomasks, with a digital micromirror device (DMD). The imaging approach was based on light-addressable electrochemical reactions on hematite, resulting in photoinduced ECL emission for spatiotemporally resolved imaging of photoelectrochemical processes selectively guided by light illumination. After clarifying the capability of hematite as a photosensitive electrode, we validated that the illuminated hematite exhibited stable light-guided ECL emission in correspondence with the illuminated area, with a spatial resolution of 0.8 µm and a temporal resolution of 1 µs, even over a long period of 6 h. More importantly, this study exemplified the simple yet effective ECL-based approach for electrochemical visualization of local photoelectrochemical processes guided by flexible and dynamic adjustment of light illumination in a spatiotemporally controlled way.

2.
ACS Appl Mater Interfaces ; 16(5): 5803-5812, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38240677

RESUMO

Proton-exchange membrane fuel cell technology is a key component in the future zero-carbon energy system, generating power from carbon-free fuels, such as green hydrogen. However, the high Pt loading in conventional fuel cell electrodes to maintain electrocatalytic activity and durability, especially on the cathode for oxygen reduction, is the Achilles heel for the worldwide deployment of fuel cell technologies. To minimize Pt consumption for oxygen reduction, we synthesized Pt-Co-based electrocatalysts with meticulous structuring from micrometer to the atomic scale based on reaction pathways. The resulting Pt-Co-based electrocatalysts contain only 1.9 wt% Pt, which is 20 times lower than the conventional Pt-C catalysts for fuel cells. By utilizing electrospinning and in situ synthesis, we anchored three-dimensionally structured zeolitic imidazolate frameworks on continuously connected nanofibrous electrospun mats. The Pt-Co@Pt-free nanowire (PC@PFN) electrocatalysts contain Pt-Co nanoparticles (NPs) and non-Pt elements, Co-containing sites comprising NPs, nanoclusters, and N-coordinated Co single atoms. Despite the ultralow Pt loading in PC@PFN, the mass activity exceeds the U.S. Department of Energy 2025 target by 2.8 times and retains 85.5% of the initial activity after 80,000 durability test cycles, possibly owing to synergistic reaction pathways between Pt and non-Pt sites.

3.
Small ; 19(49): e2304655, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37590396

RESUMO

Developing efficient and low-cost noble-free metal electrocatalysts is an urgent requirement. Herein, a one-step, solid-state template-assisted method for fabricating isolated half-metallic diatomic M, Zn─N─C (M═Fe, Co, and Ni) catalysts is reported. In particular, the fabricated Fe, Zn─N─C structure exhibits superior oxygen reduction reaction capabilities with a half-wave potential of 0.867 V versus RHE. The Mossbauer spectra reveal that the Fe, Zn─N─C half-metallic diatomic catalyst has a large proportion of the D2 site (ferrous iron with a medium spin state). Density functional theory (DFT) reveals that in Fe, Zn─N─C structures, the zinc sites play a unique role in accelerating the protonation process of O2 in ORR. In assembled zinc-air batteries, a maximum power density of 138 mW cm-2 and a capacity of 748 mAh g zn-1 can be obtained. This work fabricates a series of efficient M, Zn─N─C diatomic electrocatalysts, and the developed solid-state reaction method can hopefully apply in other energy conversion and storage fields.

4.
Sci Total Environ ; 902: 165899, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37524171

RESUMO

Photocatalytic upcycling of plastic waste is a promising approach to relieving pressure caused by solid waste, but the rational design of novel efficient photocatalysts remains a challenge. Herein, we utilize subnano-sized platinum (Pt)-based photocatalysts for plastic upcycling. A solution plasma strategy is developed to fabricate Pt-decorated Bi12O17Cl2 (SP-BOC). The Pt in an oxidant state and oxygen vacancies optimize the electronic structure for fast charge transfer. As a result, SP-BOC displays high performance for upcycling polyvinyl chloride (PVC) and polylactic acid (PLA) into acetic acid and formic acid, with yield rate and selectivity of 6.07 mg g-1cat. h-1 and 94 %, and 47.43 mg g-1cat. h-1 and 55.1 %, respectively. In addition, the dichlorination efficiency of PVC reaches 78.1 % within 10 h reaction, effectively reducing the environmental hazards associated with PVC waste disposal treatments. This research provides insight into the effective conversion of plastics into high-value chemicals, contributing to the reduction of carbon and toxic emissions in a practical and meaningful way, and offering a useful way for solving challenges of waste management and environmental sustainability.

5.
Dalton Trans ; 52(13): 4142-4151, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36891679

RESUMO

High entropy alloys (HEAs) with a tunable alloy composition and fascinating synergetic effects between various metals have attracted significant attention in the field of electrocatalysis, but their potential is limited by inefficient and unscalable fabrication methodologies. This work proposes a novel solid-state thermal reaction method to synthesise HEA nanoparticles encapsulated in an N-doped graphitised hollow carbon tube. This facile method is simple and efficient and involves no use of organic solvents during the fabrication process. The synthesized HEA nanoparticles are confined by the graphitised hollow carbon tube, which is possibly beneficial for preventing the aggregation of alloy particles during the oxygen reduction reaction (ORR). In a 0.1 M KOH solution, the HEA catalyst FeCoNiMnCu-1000(1 : 1) exhibits an onset and half-wave potential of 0.92 V and 0.78 V (vs. RHE), respectively. We assembled a Zn-Air battery with FeCoNiMnCu-1000 as a catalyst for the air electrode, and a power density of 81 mW cm-2 and a long-term durability of >200 h were achieved, which is comparable to the performance of the state-of-the-art catalyst Pt/C-RuO2. This work herein offers a scalable and green method for synthesising multinary transition metal-based HEAs and highlights the potential of HEA nanoparticles as electrocatalysts for energy storage and conversion.

6.
ACS Omega ; 8(51): 48704-48710, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162751

RESUMO

The development of environmentally friendly and efficient methods for the synthesis of ethylene carbonate (EC) is crucial for advancing carbon capture, utilization, and storage technologies. Herein, we present the synthesis of EC through the transesterification of urea with ethylene glycol (EG) using a zeolitic imidazolate framework (ZIF) derived Fe-doped ZnO catalyst (Fe;ZnO-ZIF). The Fe;ZnO-ZIF catalyst, prepared by incorporating Fe dopant atoms into a ZnO-ZIF template, demonstrates excellent catalytic activity, achieving high conversion of reactants and superior selectivity toward EC at 160 °C for 150 min under an applied vacuum (160 mmHg). Based on the thermogravimetric, X-ray spectroscopic, and temperature-programmed desorption analysis, the simultaneous presence of strong Lewis acidic and basic sites in Fe;ZnO-ZIF enables its excellent catalytic performance toward EC synthesis with high selectivity. Acidic sites activate the carbon center in urea, while basic sites facilitate the nucleophilic attack on urea by deprotonation of EG. This synergistic reaction pathway resulting from the interaction between the strong Lewis acidic and basic sites promotes nucleophilic attacks of EG on urea, leading to significantly higher conversion efficiency and selectivity, compared to the commercial benchmark ZnO. Although the establishment of a continuous reaction system which takes into account cyclability and stability of the catalysts is further required in the future, our research reported herein provides valuable insights into the design of synergistic, localized active sites for EC synthesis and contributes to the development of sustainable carbon utilization technologies for achievement of net-zero emissions.

7.
Bioelectrochemistry ; 145: 108102, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338862

RESUMO

CO2 can be a next generation feedstock for electricity-driven bioproduction due to its abundance and availability. Microbial electrosynthesis (MES), a promising technique for CO2 electroconversion, provides an attractive route for the production of valuable products from CO2, but issues surrounding efficiency and reasonable productivity should be resolved. Improving the anode performance for water oxidation under neutral pH is one of the most important aspects to advance current MES. Here, we introduce cobalt-phosphate (Co-Pi) assisted water oxidation at the counter electrode (i.e., anode) to upgrade the MES performance at pH 7.0. We show that CO2 can be converted by photochemoautotrophic bacterium, Rhodobacter sphaeroides into organic acids and carotenoids in the MES reactor. Planktonic cells of R. sphareroides in the Co-Pi anode equipped MES reactor was ca. 1.5-fold higher than in the control condition (w/o Co-Pi). The faradaic efficiency of the Co-Pi anode equipped MES reactor was remarkably higher (58.3%) than that of the bare anode (27.8%). While the system can improve the CO2 electroconversion nonetheless there are some further optimizations are necessary.


Assuntos
Rhodobacter sphaeroides , Dióxido de Carbono , Cobalto , Eletrodos , Fosfatos , Água
8.
Chemistry ; 28(14): e202104288, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35041236

RESUMO

Developing robust oxygen evolution reaction (OER) electrocatalysts with excellent performance is essential for the conversion of renewable electricity to clean fuel. Herein, we present a facile concept for the synthesis of efficient high-entropy metal-organic frameworks (HEMOFs) as electrocatalysts in a one-step solvothermal synthesis. This strategy allows control of the microstructure and corresponding lattice distortion by tuning the metal ion composition. As a result, the OER activity was improved by optimizing the coordination environment of the metal catalytic center. The optimized Co-rich HEMOFs exhibited a low overpotential of 310 mV at a current density of 10 mA cm-2 , better than a RuO2 catalyst tested under the same conditions. The finding of lattice distortion of the HEMOFs provides a new strategy for developing high-performance electrocatalysts for energy conversion.

9.
ACS Appl Mater Interfaces ; 13(39): 46499-46506, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34559532

RESUMO

Photoelectrochemical cells represent one of the promising ways to renewably produce hydrogen (H2) as a future chemical fuel. The design of a catalyst/semiconductor junction for the hydrogen evolution reaction (HER) requires various factors for high performance. In catalytic materials, an intrinsic activity with fast charge-transfer kinetics is important. Additionally, their thermodynamic property and physical adhesion should be compatible with the underlying semiconductor for favorable band alignment and stability during vigorous H2 bubble formation. Moreover, catalysts, especially non-noble materials that demand a large amount of loading, should be adequately dispersed on the semiconductor surface to allow sufficient light absorption to generate excitons. One of the methods to simultaneously satisfy these conditions is to adopt an interfacial layer between the semiconductor and active materials in HER. The interfacial layer efficiently extracts the electrons from the semiconductor and conveys those to the catalytically active surface. We demonstrate Ag as a 3D interfacial nanostructure of patterned MoSx catalysts for photoelectrochemical HER. The nanostructured porous Ag layer was introduced by a simple chemical process, followed by photoelectrochemical deposition of MoSx to form MoSx/Ag nanostructures in cross-shaped catalyst pattern arrays. Ag modulated the surface electronic property of MoSx to improve the reaction kinetics as well as helped a charge transport at the Ag|p-Si(100) junction. The physically stable adhesion of catalysts was also achieved despite the ∼40 nm thick catalysts owing to the interfacial Ag nanostructure. This work contributes to further understand the complex multistep HER from light absorption to charge transfer to protons, helping to develop cost-effective and efficient photocathodes.

10.
ACS Omega ; 6(34): 22311-22316, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497920

RESUMO

Low-cost catalysts with high activity and durability are necessary to achieve efficient large-scale energy conversion in photoelectrochemical cell (PEC) systems. An additional factor that governs the construction of photoelectrodes for PECs is the spatial control of the catalysts for efficient utilization of photogenerated charge carriers. Here, we demonstrate spatial decoupling of the light-absorbing and catalytic components in hierarchically structured Si-based photocathodes for the hydrogen evolution reaction (HER). By simply modifying a well-known metal-assisted chemical etching procedure, we fabricated a Si nanowire (NW) array-based photocathode with Ag-Pt catalysts at the base and small amounts of the Pt catalyst at the NW tips. This approach simultaneously mitigates the parasitic light absorption by the catalytic layers and recombination of charge carriers owing to the long transport distance, resulting in improved photoelectrochemical HER performance under simulated AM 1.5G illumination.

11.
Phys Chem Chem Phys ; 21(8): 4184-4192, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30724935

RESUMO

Platinum is still the most active element for the hydrogen evolution reaction (HER); however, it suffers from its scarcity and high cost. Thus, significant efforts have been dedicated to maximize the catalytic activity with less loading. When Pt is utilized at a semiconductor surface, more factors have to be considered. Placing a catalyst directly in contact with a semiconductor supports the extraction of photogenerated minority carriers as well as boosts the catalytic reactions. In addition, a catalyst should be designed with prudence not to interfere in the light path with respect to absorption at the underlying substrate. Herein, we report the development of planar Si-based photocathodes, covered with a native oxide, for the HER, which also satisfy the prerequisites for the use of a three-dimensionally patterned, flower-like Ag-Pt catalyst. The catalyst consisted of nanoparticles of homogeneously alloyed Ag and Pt, fabricated by a galvanic exchange of Pt with Ag. Importantly, these two elements were proven to have their own functionalities. Ag not only contributed to transporting e- and Had to the Pt for subsequent processes of the HER but also effectively extracted minority carriers by diluting the high work function of Pt, leading to a better Schottky barrier at the catalyst-insulator-semiconductor junction. Furthermore, computational simulation revealed that the proposed catalyst pattern alleviated optical light loss with the increasing catalyst loading compared to the two-dimensional case. Owing to these effects, we could achieve 0.36 V (vs. reversible hydrogen electrode) as an open circuit potential and the near maximum current density of planar p-type Si. The findings in this work suggests deeper insights that could support the design of catalysts for solar-fuel systems.

12.
ACS Appl Mater Interfaces ; 10(39): 33662-33668, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30230316

RESUMO

Light addressable/activated electrochemistry (LAE) has recently attracted attention as it can provide spatially resolved electrochemical information without using pre-patterned electrodes whose sizes and positions are unchangeable. Here, we propose hematite (α-Fe2O3) as the photoanode for LAE, which does not require any sort of surface modification for protection or facilitating charge transfer. As experimentally confirmed with various redox species, hematite is stable enough to be used for repetitive electroanalytical measurements. More importantly, it offers exceptionally high spatial resolution so that the "virtual electrode" is exactly as large as the light spot owing to the short diffusion length of the minority carriers. Quantitative analysis of dopamine in this study shows that the hematite-based photoanode is a promising platform for many potential LAE applications including spatially selective detection of oxidizable biomolecules.

13.
ACS Appl Mater Interfaces ; 9(28): 23698-23706, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28650138

RESUMO

For more efficient photoelectrochemical water splitting, there is a dilemma that a photoelectrode needs both light absorption and electrocatalytic faradaic reaction. One of the promising strategies is to deposit a pattern of electrocatalysts onto a semiconductor surface, leaving sufficient bare surface for light absorption while minimizing concentration overpotential as well as resistive loss at the ultramicroelectrodes for faradaic reaction. This scheme can be successfully realized by "maskless" direct photoelectrochemical patterning of electrocatalyst onto an SiOx/amorphous Si (a-Si) surface by the light-guided electrodeposition technique. Electrochemical impedance spectroscopy at various pHs tells us much about how it works. The surface states at the SiOx/a-Si interface can mediate the photogenerated electrons for hydrogen evolution, whereas electroactive species in the solution undergo outer-sphere electron transfer, taking electrons tunneling across the SiOx layer from the conduction band. In addition to previously reported long-distance lateral electron transport behavior at a patterned catalyst/SiOx/a-Si interface, the charging process of the surface states plays a crucial role in proton reduction, leading to deeper understanding of the operation mechanisms for photoelectrochemical water splitting.

14.
Anal Chem ; 87(4): 2443-51, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25590534

RESUMO

Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.


Assuntos
Condutometria , Eletrólitos/química , Nanopartículas/química , Eletrólitos/análise , Tamanho da Partícula , Porosidade , Propriedades de Superfície
15.
Nat Commun ; 4: 2766, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24216572

RESUMO

Silicon dioxide thin films are widely used as dielectric layers in microelectronics and can also be engineered on silicon wafers. It seems counterintuitive that electrochemical reactions could occur on such an insulator without relying on tunnelling current. Here we report electrochemistry based on electron transfer through a thin insulating layer of thermally grown silicon dioxide on highly n-doped silicon. Under a negative electrical bias, protons in the silicon dioxide layer were reduced to hydrogen atoms, which served as electron mediators for electrochemical reduction. Palladium nanoparticles were preferentially formed on the dielectric layer and enabled another hydrogen-atom-mediated electrochemistry, as their surfaces retained many electrogenerated hydrogen atoms to act as a 'hydrogen-atom reservoir' for subsequent electrochemical reduction. By harnessing the precisely controlled electrochemical generation of hydrogen atoms, palladium-copper nanocrystals were synthesized without any surfactant or stabilizer on the silicon dioxide layer.

16.
Adv Mater ; 24(3): 421-4, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22174102

RESUMO

Tip fabrication by a new strategy is proposed for simultaneous acquisition of electrochemical (EC) signals from an ultramicroelectrode and spectroscopic information from surface-enhanced Raman scattering (SERS). The EC-SERS tip is prepared by carefully tuning a SERS-active gold microshell to maximize Raman scattering, mechanically attaching it to the end of a micropipet, and electrically connecting it to a ruthenium inner layer through electroless deposition.


Assuntos
Ouro/química , Análise Espectral Raman , Adsorção , Eletroquímica , Piridinas/química
17.
Chem Commun (Camb) ; 46(30): 5587-9, 2010 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-20577670

RESUMO

We have devised a unique method for sensitive and selective detection of Hg(2+) ions using DNA-modified gold microshells which can be individually manipulated using a micropipette and act as a micro SERS probe for analysis in small sample volumes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA