Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0299703, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630707

RESUMO

Vascular cognitive impairment (VCI) is the second leading cause of dementia with limited treatment options, characterised by cerebral hypoperfusion-induced white matter rarefaction (WMR). Subcortical VCI is the most common form of VCI, but the underlying reasons for region susceptibility remain elusive. Recent studies employing the bilateral cortical artery stenosis (BCAS) method demonstrate that various inflammasomes regulate white matter injury and blood-brain barrier dysfunction but whether caspase-1 inhibition will be beneficial remains unclear. To address this, we performed BCAS on C57/BL6 mice to study the effects of Ac-YVAD-cmk, a caspase-1 inhibitor, on the subcortical and cortical regions. Cerebral blood flow (CBF), WMR, neuroinflammation and the expression of tight junction-related proteins associated with blood-brain barrier integrity were assessed 15 days post BCAS. We observed that Ac-YVAD-cmk restored CBF, attenuated BCAS-induced WMR and restored subcortical myelin expression. Within the subcortical region, BCAS activated the NLRP3/caspase-1/interleukin-1beta axis only within the subcortical region, which was attenuated by Ac-YVAD-cmk. Although we observed that BCAS induced significant increases in VCAM-1 expression in both brain regions that were attenuated with Ac-YVAD-cmk, only ZO-1 and occludin were observed to be significantly altered in the subcortical region. Here we show that caspase-1 may contribute to subcortical regional susceptibility in a mouse model of VCI. In addition, our results support further investigations into the potential of Ac-YVAD-cmk as a novel treatment strategy against subcortical VCI and other conditions exhibiting cerebral hypoperfusion-induced WMR.


Assuntos
Clorometilcetonas de Aminoácidos , Disfunção Cognitiva , Substância Branca , Animais , Camundongos , Substância Branca/metabolismo , Encéfalo/metabolismo , Caspase 1/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Brain Behav Immun Health ; 28: 100599, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36817510

RESUMO

Baicalein (BE) has both antioxidant and anti-inflammatory effects. It has also been reported able to improve cerebral blood circulation in brain ischemic injury. However, its chronic efficacy and metabolomics in Alzheimer's disease (AD) remain unknown. In this study, BE at 80 mg/kg was administrated through the oral route in J20 AD transgenic mice aged from aged 4 months to aged 10 months. Metabolic- and neurobehavioural phenotyping was done before and after 6 months' treatment to evaluate the drug efficacy and the relevant mechanisms. Meanwhile, molecular docking was used to study the binding affinity of BE and poly (ADP-ribose) polymerase-1 (PARP-1) which is related to neuronal injury. The open field test showed that BE could suppress hyperactivity in J20 mice and increase the frequency of the target quadrant crossing in the Morris Water Maze test. More importantly, BE restored cerebral blood flow back to the normal level after the chronic treatment. A 1H NMR-based metabolomics study showed that BE treatment could restore the tricarboxylic acid cycle in plasma. And such a treatment could suppress oxidative stress, inhibit neuroinflammation, alleviate mitochondrial dysfunction, improve neurotransmission, and restore amino homeostasis via starch and sucrose metabolism and glycolipid metabolism in the cortex and hippocampus, which could affect the behavioural and cerebral blood flow. These findings showed that BE is a potential therapeutic agent for AD.

3.
Brain Res ; 1720: 146294, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201815

RESUMO

Oligodendrocytes (OLGs) support neuronal system and have crucial roles for brain homeostasis. As the renewal and regeneration of OLGs derived from oligodendrocyte precursor cells (OPCs) are inhibited by various pathological conditions, the restoration of impaired oligodendrogenesis is a therapeutic strategy for OLG-related diseases such as subcortical ischemic vascular dementia (SIVD). Fingolimod (FTY720), a drug for multiple sclerosis, is reported to elicit a cytoprotective effect on OPCs in vitro. However, the effects of fingolimod against ischemia-induced suppression of OPC differentiation remain unknown. Hence, the purpose of this study was to investigate the effectiveness of fingolimod against ischemia-induced suppression of oligodendrogenesis. For the in vitro experiments, primary rat cultured OPCs were incubated with a non-lethal concentration of CoCl2 to induce chemical hypoxic conditions and were treated with or without fingolimod-phosphate. We found that low concentration fingolimod-phosphate directly rescued ischemia-induced suppression of OPC differentiation via the phosphoinositide 3-kinase-Akt pathway. For the in vivo experiments, we used a mouse model of SIVD generated by bilateral common carotid artery stenosis. On day 28 after surgery, fingolimod ameliorated ischemia-induced demyelination and promoted oligodendrogenesis under prolonged cerebral hypoperfusion. The present study demonstrates that fingolimod can promote oligodendrogenesis under ischemic conditions and may be a therapeutic candidate for SIVD.


Assuntos
Cloridrato de Fingolimode/farmacologia , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Oligodendroglia/metabolismo , Animais , Isquemia Encefálica/patologia , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Cloridrato de Fingolimode/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Substância Branca/patologia
4.
Brain Behav Immun ; 80: 344-357, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980950

RESUMO

Aggregation of the microtubule-associated protein, tau, can lead to neurofibrillary tangle formation in neurons and glia which is the hallmark of tauopathy. The cellular damage induced by the formation of neurofibrillary tangles leads to neuroinflammation and consecutive neuronal death. However, detailed observation of transcriptomic changes under tauopathy together with the comparison of age-dependent progression of neuroinflammatory gene expressions mediated by tau overexpression is required. Employing RNA sequencing on PS19 transgenic mice that overexpress human mutant tau harboring the P301S mutation, we have examined the effects of age-dependent tau overexpression on transcriptomic changes of immune and inflammatory responses in the cerebral cortex. Compared to age-matched wild type control, P301S transgenic mice exhibit significant transcriptomic alterations. We have observed age-dependent neuroinflammatory gene expression changes in both wild type and P301S transgenic mice where tau overexpression further promoted the expression of neuroinflammatory genes in 10-month old P301S transgenic mice. Moreover, functional gene network analyses (gene ontology and pathway enrichment) and prospective target protein interactions predicted the potential involvement of multiple immune and inflammatory pathways that may contribute to tau-mediated neuronal pathology. Our current study on P301S transgenic mice model revealed for the first time, the differences of gene expression patterns in both early and late stage of tau pathology in cerebral cortex. Our analyses also revealed that tau overexpression alone induces multiple inflammatory and immune transcriptomic changes and may provide a roadmap to elucidate the targets of anti-inflammatory therapeutic strategy focused on tau pathology and related neurodegenerative diseases.


Assuntos
Córtex Cerebral/metabolismo , Encefalite/metabolismo , Transcriptoma , Proteínas tau/metabolismo , Fatores Etários , Animais , Córtex Cerebral/patologia , Progressão da Doença , Encefalite/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos Transgênicos , Mutação , Fosforilação , Mapas de Interação de Proteínas , Proteínas tau/genética
5.
Ther Adv Neurol Disord ; 11: 1756286418771815, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774056

RESUMO

Despite extensive research, treatments for clinical stroke are still limited only to the administration of tissue plasminogen activator and the recent introduction of mechanical thrombectomy, which can be used in only a limited proportion of patients due to time constraints. A plethora of inflammatory events occur during stroke, arising in part due to the body's immune response to brain injury. Neuroinflammation contributes significantly to neuronal cell death and the development of functional impairment and death in stroke patients. Therefore, elucidating the molecular and cellular mechanisms underlying inflammatory damage following stroke injury will be essential for the development of useful therapies. Research findings increasingly point to the likelihood that epigenetic mechanisms play a role in the pathophysiology of stroke. Epigenetics involves the differential regulation of gene expression, including those involved in brain inflammation and remodelling after stroke. Hence, it is conceivable that epigenetic mechanisms may contribute to differential interindividual vulnerability and injury responses to cerebral ischaemia. In this review, we summarize recent findings on the emerging role of epigenetics in the regulation of neuroinflammation in stroke. We also discuss potential epigenetic targets that may be assessed for the development of stroke therapies.

6.
Mol Neurobiol ; 55(2): 1082-1096, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28092085

RESUMO

Multi-protein complexes, termed "inflammasomes," are known to contribute to neuronal cell death and brain injury following ischemic stroke. Ischemic stroke increases the expression and activation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) Pyrin domain containing 1 and 3 (NLRP1 and NLRP3) inflammasome proteins and both interleukin (IL)-1ß and IL-18 in neurons. In this study, we provide evidence that activation of either the NF-κB and MAPK signaling pathways was partly responsible for inducing the expression and activation of NLRP1 and NLRP3 inflammasome proteins and that these effects can be attenuated using pharmacological inhibitors of these two pathways in neurons and brain tissue under in vitro and in vivo ischemic conditions, respectively. Moreover, these findings provided supporting evidence that treatment with intravenous immunoglobulin (IVIg) preparation can reduce activation of the NF-κB and MAPK signaling pathways resulting in decreased expression and activation of NLRP1 and NLRP3 inflammasomes, as well as increasing expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, in primary cortical neurons and/or cerebral tissue under in vitro and in vivo ischemic conditions. In summary, these results provide compelling evidence that both the NF-κB and MAPK signaling pathways play a pivotal role in regulating the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons and brain tissue under ischemic conditions. In addition, treatment with IVIg preparation decreased the activation of the NF-κB and MAPK signaling pathways, and thus attenuated the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons under ischemic conditions. Hence, these findings suggest that therapeutic interventions that target inflammasome activation in neurons may provide new opportunities in the future treatment of ischemic stroke.


Assuntos
Isquemia Encefálica/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antracenos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Butadienos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Imidazóis/farmacologia , Inflamassomos/efeitos dos fármacos , Camundongos , NF-kappa B/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/efeitos dos fármacos , Nitrilas/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia
7.
Neuroreport ; 28(16): 1043-1048, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-28902708

RESUMO

Tauopathies are neurodegenerative diseases that are characterized by the presence of hyperphosphorylated tau-containing neurofibrillary tangles (NFTs) in the brain and include Alzheimer's disease and frontotemporal dementia, which lack effective disease-modifying treatments. The presence of NFTs is known to correlate with cognition impairment, suggesting that targeting tau hyperphosphorylation may be therapeutically effective. MLC901 is a herbal formulation that is currently used in poststroke recovery and consists of nine herbal components. Previously, several components of MLC901 have been shown to have an effect on tau phosphorylation, but it remains unknown whether MLC901 itself has the same effect. The objective of this study was to assess the effects of MLC901 on ameliorating tau phosphorylation at epitopes associated with NFT formation. A stably transfected cell culture model expressing tau harboring the P301S mutation was generated and treated with various concentrations of MLC901 across different time points. Tau phosphorylation profiles and protein levels of enzymes associated with tau phosphorylation were assessed using western blotting. One-way analysis of variance with Bonferroni post-hoc analysis showed that MLC901 significantly reduced tau phosphorylation at epitopes recognized by the AT8, AT270, and PHF-13 antibodies. MLC901 also induced a significant increase in the s9 phosphorylation of glycogen synthase kinase 3ß and a concurrent decrease in the activation of cyclin-dependent kinase 5, as measured by a significant decrease in the levels of p35/cyclin-dependent kinase 5. Our results provide supporting evidence to further study the effects of MLC901 on tau pathology and cognition using mouse models of tauopathy.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Emaranhados Neurofibrilares/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas tau/efeitos dos fármacos , Proteínas tau/metabolismo , Células Cultivadas , Humanos , Fosforilação/efeitos dos fármacos
8.
Mol Brain ; 9(1): 84, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609071

RESUMO

Collapsin response mediator protein-2 (CRMP2) regulates axonal growth cone extension, and increased CRMP2 phosphorylation may lead to axonal degeneration. Axonal and synaptic pathology is an important feature of Lewy body dementias (LBD), but the state of CRMP2 phosphorylation (pCRMP2) as well as its correlations with markers of neurodegeneration have not been studied in these dementias. Hence, we measured CRMP2 phosphorylation at Thr509, Thr514 and Ser522, as well as markers of ß-amyloid (Aß), tau-phosphorylation, α-synuclein and synaptic function in the postmortem neocortex of a longitudinally assessed cohort of LBD patients characterized by low (Parkinson's disease dementia, PDD) and high (dementia with Lewy bodies, DLB) burden of Alzheimer type pathology. We found specific increases of pCRMP2 at Thr514 in DLB, but not PDD. The increased CRMP2 phosphorylation correlated with fibrillogenic Aß as well as with losses of markers for axon regeneration (ß-III-tubulin) and synaptic integrity (synaptophysin) in LBD. In contrast, pCRMP2 alterations did not correlate with tau-phosphorylation or α-synuclein, and also appear unrelated to immunoreactivities of putative upstream kinases glycogen synthase kinase 3ß and cyclin-dependent kinase 5, as well as to protein phosphatase 2A. In conclusion, increased pCRMP2 may underlie the axonal pathology of DLB, and may be a novel therapeutic target. However, antecedent signaling events as well as the nature of pCRMP2 association with Aß and other neuropathologic markers require further study.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Proteínas do Tecido Nervoso/metabolismo , Fosfotreonina/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Quinase 5 Dependente de Ciclina/metabolismo , Citosol/metabolismo , Demografia , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Neocórtex/metabolismo , Neocórtex/patologia , Fosforilação , Mudanças Depois da Morte , Sinaptofisina/metabolismo , Tubulina (Proteína)/metabolismo
9.
Front Aging Neurosci ; 5: 38, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23964237

RESUMO

The amyloidogenic peptide Aß plays a key role in Alzheimer's disease (AD) forming insoluble aggregates in the brain. The peptide shares its amyloidogenic properties with amylin that forms aggregates in the pancreas of patients with Type 2 Diabetes mellitus (T2DM). While epidemiological studies establish a link between these two diseases, it is becoming increasingly clear that they also share biochemical features suggesting common pathogenic mechanisms. We discuss commonalities as to how Aß and amylin deregulate the cellular proteome, how they impair mitochondrial functions, to which receptors they bind, aspects of their clearance and how therapeutic strategies exploit the commonalities between Aß and amylin. We conclude that research into these two molecules is mutually beneficial for the treatment of AD and T2DM.

10.
Mol Neurobiol ; 46(1): 151-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22678467

RESUMO

Hormonal deficit in post-menopausal women has been proposed to be one risk factor in Alzheimer's disease (AD) since two thirds of AD patients are women. However, large treatment trials showed negative effects of long-term treatment with oestrogens in older women. Thus, oestrogen treatment after menopause is still under debate, and several hypotheses trying to explain the failure in outcome are under discussion. Concurrently, it was shown that amyloid-beta (Aß) peptide, the main constituent of senile plaques, as well as abnormally hyperphosphorylated tau protein, the main component of neurofibrillary tangles, can modulate the level of neurosteroids which notably represent neuroactive steroids synthetized within the nervous system, independently of peripheral endocrine glands. In this review, we summarize the role of neurosteroids especially that of oestrogen in AD and discuss their potentially neuroprotective effects with specific regard to the role of oestrogens on the maintenance and function of mitochondria, important organelles which are highly vulnerable to Aß- and tau-induced toxicity. We also discuss the role of Aß-binding alcohol dehydrogenase (ABAD), a mitochondrial enzyme able to bind Aß peptide thereby modifying mitochondrial function as well as oestradiol levels suggesting possible modes of interaction between the three, and the potential therapeutic implication of inhibiting Aß-ABAD interaction.


Assuntos
Doença de Alzheimer/patologia , Estrogênios/metabolismo , Mitocôndrias/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Fármacos Neuroprotetores/metabolismo , Estresse Oxidativo , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA