Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Front Physiol ; 14: 1182303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362442

RESUMO

We evaluated the influence of aerobic physical exercise (EX) on gene-encoding proteins associated with oxidative stress in diaphragm muscle of rats with aortic stenosis-induced heart failure (HF). Wistar male rats were divided into four groups: Control sedentary (C); Control exercise (C-Ex); Sedentary aortic stenosis (AS); Aortic stenosis exercise (AS-Ex). Exercised rats trained 5 times a week for 10 weeks on a treadmill. Statistical analysis was performed by ANOVA or Kruskal-Wallis test. In the final echocardiogram, animals with aortic stenosis subjected to exercise demonstrated improvement in systolic function compared to the sedentary aortic stenosis group. In diaphragm muscle, the activity of antioxidant enzymes, malondialdehyde malondialdehyde concentration, protein carbonylation, and protein expression of p65 and its inhibitor IκB did not differ between groups. Alterations in gene expression of sources that generate reactive species of oxygen were observed in AS-Ex group, which showed decreased mRNA abundance of NOX2 and NOX4 compared to the aortic stenosis group (p < 0.05). We concluded that aerobic exercise has a positive impact during heart failure, ameliorating systolic dysfunction and biomarkers of oxidative stress in diaphragm muscle of rats with aortic stenosis-induced heart failure.

2.
Antioxidants (Basel) ; 12(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37107271

RESUMO

INTRODUCTION: Exercise is an important therapeutic strategy for preventing and treating myocardial infarction (MI)-induced cardiac remodeling and heart failure. However, the myocardial effects of resistance exercise on infarcted hearts are not completely established. In this study, we investigated the effects of resistance exercise on structural, functional, and molecular cardiac alterations in infarcted rats. METHODS: Three months after MI induction or simulated surgery, Wistar rats were assigned into three groups: Sham (n = 14); MI (n = 9); and exercised MI (MI-Ex, n = 13). Exercised rats performed, 3 times a week for 12 weeks, four climbs on a ladder with progressive loads. Cardiac structure and left ventricle (LV) function were analyzed by echocardiogram. Myocyte diameters were evaluated in hematoxylin- and eosin-stained histological sections as the smallest distance between borders drawn across the nucleus. Myocardial energy metabolism, lipid hydroperoxide, malondialdehyde, protein carbonylation, and antioxidant enzyme activities were evaluated by spectrophotometry. Gene expressions of NADPH oxidase subunits were evaluated by RT-PCR. Statistical analyses were performed using ANOVA and Tukey or Kruskal-Wallis and Dunn's test. RESULTS: Mortality did not differ between the MI-Ex and MI groups. MI had dilated left atrium and LV, with LV systolic dysfunction. Exercise increased the maximum load-carrying capacity, with no changes in cardiac structure or LV function. Myocyte diameters were lower in MI than in Sham and MI-Ex. Lactate dehydrogenase and creatine kinase activity were lower in MI than in Sham. Citrate synthase and catalase activity were lower in MI and MI-Ex than in Sham. Lipid hydroperoxide concentration was lower in MI-Ex than in MI. Nox2 and p22phox gene expressions were higher in MI-Ex than in Sham. Gene expression of Nox4 was higher in MI and MI-Ex than in Sham, and p47phox was lower in MI than in Sham. CONCLUSION: Late resistance exercise was safe in infarcted rats. Resistance exercise improved maximum load-carrying capacity, reduced myocardial oxidative stress, and preserved myocardial metabolism, with no changes in cardiac structure or left ventricle function in infarcted rats.

7.
Oncotarget ; 8(12): 20428-20440, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28099900

RESUMO

Skeletal muscle abnormalities are responsible for significant disability in the elderly. Sarcopenia is the main alteration occurring during senescence and a key public health issue as it predicts frailty, poor quality of life, and mortality. Several factors such as reduced physical activity, hormonal changes, insulin resistance, genetic susceptibility, appetite loss, and nutritional deficiencies are involved in the physiopathology of muscle changes. Sarcopenia is characterized by structural, biochemical, molecular and functional muscle changes. An imbalance between anabolic and catabolic intracellular signaling pathways and an increase in oxidative stress both play important roles in muscle abnormalities. Currently, despite the discovery of new targets and development of new drugs, nonpharmacological therapies such as physical exercise and nutritional support are considered the basis for prevention and treatment of age-associated muscle abnormalities. There has been an increase in information on signaling pathways beneficially modulated by exercise; nonetheless, studies are needed to establish the best type, intensity, and frequency of exercise to prevent or treat age-induced skeletal muscle alterations.


Assuntos
Envelhecimento/fisiologia , Exercício Físico/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Estresse Oxidativo/fisiologia , Animais , Humanos
8.
Oxid Med Cell Longev ; 2016: 8695716, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904168

RESUMO

Objective. We evaluated the influence of exercise on functional capacity, cardiac remodeling, and skeletal muscle oxidative stress, MAPK, and NF-κB pathway in rats with aortic stenosis- (AS-) induced heart failure (HF). Methods and Results. Eighteen weeks after AS induction, rats were assigned into sedentary control (C-Sed), exercised control (C-Ex), sedentary AS (AS-Sed), and exercised AS (AS-Ex) groups. Exercise was performed on treadmill for eight weeks. Statistical analyses were performed with Goodman and ANOVA or Mann-Whitney. HF features frequency and mortality did not differ between AS groups. Exercise improved functional capacity, assessed by maximal exercise test on treadmill, without changing echocardiographic parameters. Soleus cross-sectional areas did not differ between groups. Lipid hydroperoxide concentration was higher in AS-Sed than C-Sed and AS-Ex. Activity of antioxidant enzymes superoxide dismutase and glutathione peroxidase was changed in AS-Sed and restored in AS-Ex. NADPH oxidase activity and gene expression of its subunits did not differ between AS groups. Total ROS generation was lower in AS-Ex than C-Ex. Exercise modulated MAPK in AS-Ex and did not change NF-κB pathway proteins. Conclusion. Exercise improves functional capacity in rats with AS-induced HF regardless of echocardiographic parameter changes. In soleus, exercise reduces oxidative stress, preserves antioxidant enzyme activity, and modulates MAPK expression.


Assuntos
Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/fisiopatologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Músculo Esquelético/patologia , Estresse Oxidativo , Condicionamento Físico Animal , Animais , Antioxidantes/metabolismo , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/patologia , Western Blotting , Diástole , Eletrocardiografia , Regulação Enzimológica da Expressão Gênica , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/patologia , Peroxidação de Lipídeos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Esquelético/fisiopatologia , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos Wistar , Sístole
9.
Cell Physiol Biochem ; 34(2): 333-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25060722

RESUMO

BACKGROUND: Intracellular signaling pathways involved in skeletal myosin heavy chain (MyHC) isoform alterations during heart failure (HF) are not completely understood. We tested the hypothesis that diaphragm expression of mitogen-activated protein kinases (MAPK) and myogenic regulatory factors is changed in rats with myocardial infarction (MI) induced HF. METHODS: Six months after MI rats were subjected to transthoracic echocardiography. After euthanasia, infarcted rats were subdivided in MI/HF- group (with no HF evidence; n=10), and MI/HF+ (with right ventricular hypertrophy and lung congestion; n=10). Sham-operated rats were used as controls (n=10). MyHC isoforms were analyzed by electrophoresis. STATISTICAL ANALYSIS: ANOVA and Pearson correlation. RESULTS: MI/HF- had left cardiac chambers dilation with systolic and diastolic left ventricular dysfunction. Cardiac injury was more intense in MI/HF+ than MI/HF-. MyHC I isoform percentage was higher in MI/HF+ than MI/HF-, and IIb isoform lower in MI/HF+ than Sham. Left atrial diameter-to-body weight ratio positively correlated with MyHC I (p=0.005) and negatively correlated with MyHC IIb (p=0.02). TNF-α serum concentration positively correlated with MyHC I isoform. Total and phosphorylated ERK was lower in MI/HF- and MI/HF+ than Sham. Phosphorylated JNK was lower in MI/HF- than Sham. JNK and p38 did not differ between groups. Expression of NF-κB and the myogenic regulatory factors MyoD, myogenin, and MRF4 was similar between groups. CONCLUSION: Diaphragm MyHC fast-to-slow shift is related to cardiac dysfunction severity and TNF-α serum levels in infarcted rats. Reduced ERK expression seems to participate in MyHC isoform changes. Myogenic regulatory factors and NF-κB do not modulate diaphragm MyHC distribution during chronic HF.


Assuntos
Diafragma/patologia , Insuficiência Cardíaca/complicações , Doenças Musculares/etiologia , Infarto do Miocárdio/complicações , Animais , Western Blotting , Ecocardiografia , Insuficiência Cardíaca/diagnóstico por imagem , Interleucina-6/sangue , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA