Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Magnes Res ; 35(1): 1-10, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214549

RESUMO

In the present study, we investigated whether magnesium sulphate activates the L-arginine/NO/cGMP pathway and elicits peripheral antinociception. The male Swiss mice paw pressure test was performed with hyperalgesia induced by intraplantar injection of prostaglandin E2. All drugs were administered locally into the right hind paw of animals. Magnesium sulphate (20, 40, 80 and 160 µg/paw) induced an antinociceptive effect. The dose of 80 µg/paw elicited a local antinociceptive effect that was antagonized by the non-selective NOS inhibitor, L-NOArg, and by the selective neuronal NOS inhibitor, L-NPA. The inhibitors, L-NIO and L-NIL, selectively inhibited endothelial and inducible NOS, respectively, but were ineffective regarding peripheral magnesium sulphate injection. The soluble guanylyl cyclase inhibitor, ODQ, blocked the action of magnesium sulphate, and the cGMP-phosphodiesterase inhibitor, zaprinast, enhanced the antinociceptive effects of intermediate dose of magnesium sulphate. Our results suggest that magnesium sulphate stimulates the NO/cGMP pathway via neuronal NO synthase to induce peripheral antinociceptive effects.


Assuntos
Dinoprostona , Sulfato de Magnésio , Analgésicos/farmacologia , Animais , Arginina/metabolismo , GMP Cíclico/metabolismo , Dinoprostona/efeitos adversos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Sulfato de Magnésio/farmacologia , Masculino , Camundongos , Óxido Nítrico , Nitroarginina , Inibidores de Fosfodiesterase/farmacologia , Guanilil Ciclase Solúvel/antagonistas & inibidores
2.
Eur J Pharmacol ; 896: 173900, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545158

RESUMO

Tissue injury results in the release of inflammatory mediators, including a cascade of nociceptive substances, which contribute to development of hyperalgesia. In addition, during this process endogenous analgesic substances are also peripherally released with the aim of controlling the hyperalgesia. Thus, the present study aimed to investigate whether inflammatory mediators TNF-α, IL-1ß, CXCL1, norepinephrine (NE) and prostaglandin E2 (PGE2) may be involved in the deflagration of peripheral endogenous modulation of inflammatory pain by activation of the opioid system. Thus, male Swiss mice and the paw withdrawal test were used. All substances were injected by the intraplantar route. Carrageenan, TNF-α, CXCL-1, IL1-ß, NE and PGE2 induced hyperalgesia. Selectives µ (clocinamox), δ (naltrindole) and κ (norbinaltorphimine, nor-BNI) and non-selective (naloxone) opioid receptor antagonists potentiated the hyperalgesia induced by carrageenan, TNF-α, CXCL-1 and IL1-ß. In contrast, when the enzyme N-aminopeptidase involved in the degradation of endogenous opioid peptides was inhibited by bestatin, the hyperalgesia was significantly reduced. In addition, the western blotting assay indicated that the expression of the opioid δ receptor was increased after intraplantar injection of carrageenan. The data obtained in this work corroborate the hypothesis that TNF-α, CXCL-1 and IL-ß cause, in addition to hyperalgesia, the release of endogenous substances such as opioid peptides, which in turn exert endogenous control over peripheral inflammatory pain.


Assuntos
Quimiocina CXCL1 , Hiperalgesia/induzido quimicamente , Interleucina-1beta , Nociceptividade , Dor Nociceptiva/induzido quimicamente , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , Fator de Necrose Tumoral alfa , Animais , Carragenina , Dinoprostona , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Masculino , Camundongos , Antagonistas de Entorpecentes/farmacologia , Nociceptividade/efeitos dos fármacos , Dor Nociceptiva/metabolismo , Dor Nociceptiva/fisiopatologia , Dor Nociceptiva/prevenção & controle , Norepinefrina , Receptores Opioides/efeitos dos fármacos , Transdução de Sinais
3.
Eur J Pharmacol ; 865: 172808, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31738939

RESUMO

Ketamine is a drug largely used in clinical practice as an anesthetic and it can also be used as an analgesic to manage chronic pain symptoms. Despite its interactions with several other signaling systems such as cholinergic, serotoninergic and adrenergic, it is accepted that NMDA receptor antagonism is the main mechanism of action of this drug. In this study we investigated the actions of endogenous opioids in the mechanism of peripheral analgesia induced by ketamine. The nociceptive threshold for mechanical stimuli was measured in Swiss mice using the Randall and Selitto test. The drugs used in this study were administered via intraplantar injection. Our results demonstrated that non selective opioid receptor antagonism (naloxone), selective µ- and δ-opioid receptors antagonism (clocinamox and naltrindole, respectively) but not κ-opioid receptor antagonism (nor-binaltorphimine NORBNI) antagonized ketamine-induced peripheral antinociception in a dose-dependent manner. In addition, administration of aminopeptidase inhibitor bestatin significantly potentiated ketamine-induced peripheral antinociception. Ketamine injection in the right hind paw induced ß-endorphine synthesis in the epithelial tissue of the hindpaw. Together these results indicate a role for µ- and δ-opioid receptors and for the endogenous opioid ß-endorphine increased synthesis in ketamine-induced peripheral analgesia mechanism of action.


Assuntos
Analgésicos/uso terapêutico , Ketamina/uso terapêutico , Dor/tratamento farmacológico , Receptores Opioides delta , Receptores Opioides mu , Analgésicos/farmacologia , Animais , Cinamatos/farmacologia , Dinoprostona , Ketamina/farmacologia , Masculino , Camundongos , Derivados da Morfina/farmacologia , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/induzido quimicamente , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA