Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 133885, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484658

RESUMO

Turtles are a potential sentinel species of aquatic ecosystem health as they inhabit aquatic ecosystems, are long lived, and potentially have high exposure to anthropogenic chemicals via food and water. This study investigated per- and polyfluoroalkyl substances (PFAS) tissue partitioning in female Emydura macquarii macquarii turtle, and the maternal offloading of (PFAS) into eggs and then hatchlings as well as the accumulation of PFAS in male and female Emydura macquarii macquarii serum. Significantly higher levels of perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) were measured in the male serum compared to the female turtle serum, whereas perfluoroalkane sulfonamides (FASAs) were significantly higher in the female turtle serum. Perfluorooctane sulfonate (PFOS) was the predominant PFAS in the turtles whereas PFHxA was the predominant PFAS found in the surrounding water. PFHxA was not reported in any turtle tissue or the serum. The short-chain PFSAs and FASAs appeared to be highly associated with blood; long-chain PFSAs and PFCAs were more likely to be associated with tissue. Half of the PFHxS and all the long-chain PFSAs and PFCAs reported in the yolks were transferred into the hatchlings (by mass), suggesting a potential intergenerational effect.


Assuntos
Ácidos Alcanossulfônicos , Polímeros de Fluorcarboneto , Fluorocarbonos , Tartarugas , Poluentes Químicos da Água , Animais , Masculino , Feminino , Ecossistema , Austrália , Água Doce , Fluorocarbonos/análise , Água , Poluentes Químicos da Água/análise
2.
Environ Manage ; 69(5): 972-981, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35132453

RESUMO

Inundation of Australian freshwater turtle nests has been identified as a threat to recruitment and long-term viability of species such as the critically endangered white-throated snapping turtle (Elseya albagula). Water level fluctuations within water storage infrastructure can inundate significant proportions of E. albagula nests in any year. Using an ecological risk assessment framework, operating rules for a water storage in the Burnett River (South East Queensland, Australia) were implemented to support nesting of E. albagula. Turtles were encouraged to nest at higher elevations on riverbanks by maintaining higher water levels in the impoundment during the nesting season, followed by lowering of water levels during the incubation period to minimise rates of nest inundation from riverine inflows. To verify the success of the new rules, a three-year confirmation monitoring program of nest heights and water levels was undertaken. Results of confirmation monitoring showed that 3% (2018), 11% (2019) and 0% (2020) of E. albagula nests were inundated under the new operating rules, compared to previously estimated nest inundation rates of >20% in ~24% of years of a 118-year simulation period (1890-2008) under previous storage operating rules. Emergency releases from an upstream storage in 2019 and 2020 for dam safety did not affect the success of the rule, demonstrating its resilience to natural and artificial flow regimes. This study demonstrates the importance of confirmation monitoring in verifying the efficacy of targeted changes to water management, and highlights potential application across other water storage infrastructure with threatened freshwater turtle populations requiring adaptive management.


Assuntos
Tartarugas , Animais , Austrália , Água Doce , Rios , Água
3.
Glob Chang Biol ; 20(8): 2437-49, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24353164

RESUMO

Artificial light at night poses a significant threat to multiple taxa across the globe. In coastal regions, artificial lighting close to marine turtle nesting beaches is disruptive to their breeding success. Prioritizing effective management of light pollution requires an understanding of how the light exposure of nesting areas changes over time in response to changing temporal and spatial distributions of coastal development. We analyzed multitemporal, satellite night-light data, in combination with linear mixed model analysis, to determine broadscale changes in artificial light exposure at Australian marine turtle nesting areas between 1993 and 2010. We found seven marine turtle management units (MU), from five species, have experienced significant increases in light exposure over time, with flatback turtles nesting in east Australia experiencing the fastest increases. The remaining 12 MUs showed no significant change in light exposure. Unchanging MUs included those previously identified as having high exposure to light pollution (located in western Australia and southern Queensland), indicating that turtles in these areas have been potentially exposed to high light levels since at least the early nineties. At a finer geographic scale (within-MU), nine MUs contained nesting areas with significant increases in light exposure. These nesting areas predominantly occurred close to heavily industrialized coastal areas, thus emphasizing the importance of rigorous light management in industry. Within all MUs, nesting areas existed where light levels were extremely low and/or had not significantly increased since 1993. With continued coastal development, nesting females may shift to these darker/unchanging 'buffer' areas in the future. This is valuable information that informs our understanding of the capacity and resilience of marine turtles faced with coastal development: an understanding that is essential for effective marine turtle conservation.


Assuntos
Ecossistema , Iluminação , Tartarugas/fisiologia , Animais , Austrália , Feminino , Comportamento de Nidação
4.
Proc Biol Sci ; 271 Suppl 3: S91-4, 2004 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-15101429

RESUMO

Vertebrates exhibit varied behavioural and physiological tactics to promote reproductive success. We examined mechanisms that could enable female loggerhead turtles to undertake nesting activities and maintain seasonal reproduction despite recent shark injuries of varying severity. We proposed that endocrinal mechanisms that regulate both a turtle's stress response and reproductive ability are modified to promote successful and continued reproduction. Irrespective of the degree of injury, females did not exhibit increased levels of the stress hormone corticosterone, nor decreased levels of the reproductive steroid testosterone; hormone responses consistent with stress. When exposed to a capture stressor, females with shark injury did not exhibit any greater corticosterone response than controls. In addition, breeding females showed a reduced corticosterone stress response compared to non-breeding females. Reduced endocrinal responses following shark injury, and during breeding in general may, in part, enable females to maintain behavioural and physiological commitment to reproduction.


Assuntos
Comportamento de Nidação/fisiologia , Prenhez/fisiologia , Reprodução/fisiologia , Estresse Fisiológico/fisiopatologia , Tartarugas/lesões , Tartarugas/fisiologia , Análise de Variância , Animais , Corticosterona/sangue , Feminino , Oceano Pacífico , Gravidez , Testosterona/sangue
5.
Gen Comp Endocrinol ; 126(1): 59-67, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11944967

RESUMO

During reproduction, male vertebrates may exhibit a continuum of interactions between sex and adrenal steroids during stressful events, the outcome of which may be important in either reducing or promoting male reproductive success. We studied adult male green turtles (Chelonia mydas) to examine if they altered plasma corticosterone (CORT) and androgen levels in response to a standardized capture/restraint stressor as potential mechanisms to maintain reproductive activity during stressful events. At the population level, we found that migrant breeding males had a significantly smaller CORT response to the capture/restraint stressor compared to nonbreeding males and that this decreased response coincided with the generally poorer body condition of migrant breeders. In contrast, plasma androgen levels decreased significantly in response to the capture/restraint stressor in migrant breeding males, but not in nonbreeding and pre-migrant breeding males. For individual migrant breeding males, the magnitude of their CORT and androgen responses to the capture/restraint stressor was highly correlated with their body condition and body length, respectively. Our results demonstrate that male green turtles exhibit complex interactions in their endocrine responses to a capture/restraint stressor and that variation in these interactions is associated with differences in males' reproductive, energetic, and physical state. We hypothesize that interplay between physical status and plasma hormone responses to stressors could have important consequences for male green turtle reproduction.


Assuntos
Androgênios/sangue , Corticosterona/sangue , Reprodução/fisiologia , Estresse Fisiológico/veterinária , Tartarugas/fisiologia , Animais , Masculino , Queensland , Restrição Física/veterinária , Estresse Fisiológico/fisiopatologia , Tartarugas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA