Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur Heart J ; 45(10): 791-805, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37952204

RESUMO

BACKGROUND AND AIMS: Clonal haematopoiesis of indeterminate potential (CHIP), the age-related expansion of blood cells with preleukemic mutations, is associated with atherosclerotic cardiovascular disease and heart failure. This study aimed to test the association of CHIP with new-onset arrhythmias. METHODS: UK Biobank participants without prevalent arrhythmias were included. Co-primary study outcomes were supraventricular arrhythmias, bradyarrhythmias, and ventricular arrhythmias. Secondary outcomes were cardiac arrest, atrial fibrillation, and any arrhythmia. Associations of any CHIP [variant allele fraction (VAF) ≥ 2%], large CHIP (VAF ≥10%), and gene-specific CHIP subtypes with incident arrhythmias were evaluated using multivariable-adjusted Cox regression. Associations of CHIP with myocardial interstitial fibrosis [T1 measured using cardiac magnetic resonance (CMR)] were also tested. RESULTS: This study included 410 702 participants [CHIP: n = 13 892 (3.4%); large CHIP: n = 9191 (2.2%)]. Any and large CHIP were associated with multi-variable-adjusted hazard ratios of 1.11 [95% confidence interval (CI) 1.04-1.18; P = .001] and 1.13 (95% CI 1.05-1.22; P = .001) for supraventricular arrhythmias, 1.09 (95% CI 1.01-1.19; P = .031) and 1.13 (95% CI 1.03-1.25; P = .011) for bradyarrhythmias, and 1.16 (95% CI, 1.00-1.34; P = .049) and 1.22 (95% CI 1.03-1.45; P = .021) for ventricular arrhythmias, respectively. Associations were independent of coronary artery disease and heart failure. Associations were also heterogeneous across arrhythmia subtypes and strongest for cardiac arrest. Gene-specific analyses revealed an increased risk of arrhythmias across driver genes other than DNMT3A. Large CHIP was associated with 1.31-fold odds (95% CI 1.07-1.59; P = .009) of being in the top quintile of myocardial fibrosis by CMR. CONCLUSIONS: CHIP may represent a novel risk factor for incident arrhythmias, indicating a potential target for modulation towards arrhythmia prevention and treatment.


Assuntos
Fibrilação Atrial , Parada Cardíaca , Insuficiência Cardíaca , Humanos , Hematopoiese Clonal , Bradicardia
3.
Nature ; 616(7958): 747-754, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046084

RESUMO

Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.


Assuntos
Hematopoiese Clonal , Suscetibilidade a Doenças , Hepatite , Cirrose Hepática , Animais , Camundongos , Hematopoiese Clonal/genética , Hepatite/genética , Inflamação/genética , Cirrose Hepática/genética , Hepatopatia Gordurosa não Alcoólica/genética , Razão de Chances , Progressão da Doença
4.
Blood ; 140(10): 1094-1103, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714308

RESUMO

Gout is a common inflammatory arthritis caused by precipitation of monosodium urate (MSU) crystals in individuals with hyperuricemia. Acute flares are accompanied by secretion of proinflammatory cytokines, including interleukin-1ß (IL-1ß). Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related condition predisposing to hematologic cancers and cardiovascular disease. CHIP is associated with elevated IL-1ß, thus we investigated CHIP as a risk factor for gout. To test the clinical association between CHIP and gout, we analyzed whole exome sequencing data from 177 824 individuals in the MGB Biobank (MGBB) and UK Biobank (UKB). In both cohorts, the frequency of gout was higher among individuals with CHIP than without CHIP (MGBB, CHIP with variant allele fraction [VAF] ≥2%: odds ratio [OR], 1.69; 95% CI, 1.09-2.61; P = .0189; UKB, CHIP with VAF ≥10%: OR, 1.25; 95% CI, 1.05-1.50; P = .0133). Moreover, individuals with CHIP and a VAF ≥10% had an increased risk of incident gout (UKB: hazard ratio [HR], 1.28; 95% CI, 1.06-1.55; P = .0107). In murine models of gout pathogenesis, animals with Tet2 knockout hematopoietic cells had exaggerated IL-1ß secretion and paw edema upon administration of MSU crystals. Tet2 knockout macrophages elaborated higher levels of IL-1ß in response to MSU crystals in vitro, which was ameliorated through genetic and pharmacologic Nlrp3 inflammasome inhibition. These studies show that TET2-mutant CHIP is associated with an increased risk of gout in humans and that MSU crystals lead to elevated IL-1ß levels in Tet2 knockout murine models. We identify CHIP as an amplifier of NLRP3-dependent inflammatory responses to MSU crystals in patients with gout.


Assuntos
Dioxigenases , Gota , Animais , Hematopoiese Clonal , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Gota/genética , Humanos , Inflamassomos/genética , Interleucina-1beta/genética , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ácido Úrico/química , Ácido Úrico/farmacologia
5.
J Clin Invest ; 132(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35763353

RESUMO

Targeted protein degradation is a rapidly advancing and expanding therapeutic approach. Drugs that degrade GSPT1 via the CRL4CRBN ubiquitin ligase are a new class of cancer therapy in active clinical development with evidence of activity against acute myeloid leukemia in early-phase trials. However, other than activation of the integrated stress response, the downstream effects of GSPT1 degradation leading to cell death are largely undefined, and no murine models are available to study these agents. We identified the domains of GSPT1 essential for cell survival and show that GSPT1 degradation leads to impaired translation termination, activation of the integrated stress response pathway, and TP53-independent cell death. CRISPR/Cas9 screens implicated decreased translation initiation as protective following GSPT1 degradation, suggesting that cells with higher levels of translation are more susceptible to the effects of GSPT1 degradation. We defined 2 Crbn amino acids that prevent Gspt1 degradation in mice, generated a knockin mouse with alteration of these residues, and demonstrated the efficacy of GSPT1-degrading drugs in vivo with relative sparing of numbers and function of long-term hematopoietic stem cells. Our results provide a mechanistic basis for the use of GSPT1 degraders for the treatment of cancer, including TP53-mutant acute myeloid leukemia.


Assuntos
Leucemia , Fatores de Terminação de Peptídeos , Animais , Morte Celular , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Proteólise
6.
J Exp Med ; 218(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34698806

RESUMO

Osteoporosis is caused by an imbalance of osteoclasts and osteoblasts, occurring in close proximity to hematopoietic cells in the bone marrow. Recurrent somatic mutations that lead to an expanded population of mutant blood cells is termed clonal hematopoiesis of indeterminate potential (CHIP). Analyzing exome sequencing data from the UK Biobank, we found CHIP to be associated with increased incident osteoporosis diagnoses and decreased bone mineral density. In murine models, hematopoietic-specific mutations in Dnmt3a, the most commonly mutated gene in CHIP, decreased bone mass via increased osteoclastogenesis. Dnmt3a-/- demethylation opened chromatin and altered activity of inflammatory transcription factors. Bone loss was driven by proinflammatory cytokines, including Irf3-NF-κB-mediated IL-20 expression from Dnmt3a mutant macrophages. Increased osteoclastogenesis due to the Dnmt3a mutations was ameliorated by alendronate or IL-20 neutralization. These results demonstrate a novel source of osteoporosis-inducing inflammation.


Assuntos
Hematopoiese Clonal/genética , DNA Metiltransferase 3A/genética , Osteoporose/genética , Adulto , Idoso , Alendronato/farmacologia , Animais , Anticorpos Neutralizantes/farmacologia , Diferenciação Celular/genética , Hematopoiese Clonal/fisiologia , DNA Metiltransferase 3A/metabolismo , Feminino , Humanos , Interleucinas/imunologia , Interleucinas/metabolismo , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Osteoclastos/patologia , Osteoporose/sangue , Osteoporose/tratamento farmacológico , Osteoporose/fisiopatologia
8.
Nature ; 586(7831): 763-768, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057201

RESUMO

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.


Assuntos
Hematopoiese Clonal/genética , Predisposição Genética para Doença , Genoma Humano/genética , Sequenciamento Completo do Genoma , Adulto , África/etnologia , Idoso , Idoso de 80 Anos ou mais , População Negra/genética , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Mutação em Linhagem Germinativa/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Medicina de Precisão , Proteínas Proto-Oncogênicas/genética , Proteínas com Motivo Tripartido/genética , Estados Unidos , alfa Carioferinas/genética
9.
JAMA Cardiol ; 5(8): 958-961, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459358

RESUMO

Importance: Despite current standards of cardiovascular care, a considerable residual burden of risk remains in both primary and secondary prevention. Clonal hematopoiesis of indeterminate potential (CHIP) has recently emerged as a common, potent, age-associated, independent risk factor for myocardial infarction, stroke, heart failure events, and survival following percutaneous aortic valve intervention. The presence of CHIP results from the acquisition of somatic mutations in a small number of leukemia driver genes found in bone marrow stem cells, leading to the expansion of leukocytes clones in peripheral blood. The association between CHIP and cardiovascular disease likely involves activation of the inflammasome pathway. More common DNA sequencing identifies individuals with CHIP who then seek advice regarding management of their cardiovascular risk. Observations: Using clinical vignettes based on real encounters, we highlight some of the diverse presentations of CHIP, ranging from incidental identification to that detected during cancer care, that have brought patients to the attention of cardiovascular practitioners. We illustrate how we have applied a consensus-based approach to the evaluation and management of cardiovascular risk in specific patients with CHIP. Since we currently lack evidence to guide the management of these individuals, we must rely on expert opinion while awaiting data to furnish a firmer foundation for our recommendations. Conclusions and Relevance: These vignettes illustrate that the management of CHIP should involve an individualized plan based on features such as comorbidities, life expectancy, and other traditional cardiovascular risk factors. Because individuals with CHIP will increasingly seek advice from cardiovascular specialists regarding management, these examples provide a template for approaches based on a multidisciplinary perspective. The current need for reliance on expert opinion illustrates a great need for further investigation into the management of this newly recognized contributor to residual cardiovascular risk, both in patients who are apparently well and those with established cardiovascular or malignant disease.


Assuntos
Doenças Cardiovasculares/etiologia , Hematopoiese Clonal , Fatores de Risco de Doenças Cardíacas , Doenças Cardiovasculares/prevenção & controle , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
10.
J Am Coll Cardiol ; 74(4): 567-577, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31345432

RESUMO

A novel, common, and potent cardiovascular risk factor has recently emerged: clonal hematopoiesis of indeterminate potential (CHIP). CHIP arises from somatic mutations in hematopoietic stem cells that yield clonal progeny of mutant leukocytes in blood. Individuals with CHIP have a doubled risk of coronary heart disease and ischemic stroke, and worsened heart failure outcomes independent of traditional cardiovascular risk factors. The recognition of CHIP as a nontraditional risk factor challenges specialists in hematology/oncology and cardiovascular medicine alike. Should we screen for CHIP? If so, in whom? How should we assess cardiovascular risk in people with CHIP? How should we manage the excess cardiovascular risk in the absence of an evidence base? This review explains CHIP, explores the clinical quandaries, strives to provide reasonable recommendations for the multidisciplinary management of cardiovascular risk in individuals with CHIP, and highlights current knowledge gaps.


Assuntos
Envelhecimento , Doenças Cardiovasculares/etiologia , Hematopoese/genética , Células-Tronco Hematopoéticas , Mutação , Algoritmos , Doenças Cardiovasculares/genética , Humanos , Neoplasias/complicações , Neoplasias/genética , Fatores de Risco
12.
J Immunol ; 199(12): 4056-4065, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109121

RESUMO

The decision between T cell activation and tolerance is governed by the spatial and temporal integration of diverse molecular signals and events occurring downstream of TCR and costimulatory or coinhibitory receptor engagement. The PI3K-protein kinase B (PKB; also known as Akt) signaling pathway is a central axis in mediating proximal signaling events of TCR and CD28 engagement in T cells. Perturbation of the PI3K-PKB pathway, or the loss of negative regulators of T cell activation, such as the E3 ubiquitin ligase Cbl-b, have been reported to lead to increased susceptibility to autoimmunity. In this study, we further examined the molecular pathway linking PKB and Cbl-b in murine models. Our data show that the protein kinase GSK-3, one of the first targets identified for PKB, catalyzes two previously unreported phosphorylation events at Ser476 and Ser480 of Cbl-b. GSK-3 inactivation by PKB abrogates phosphorylation of Cbl-b at these two sites and results in reduced Cbl-b protein levels. We further show that constitutive activation of PKB in vivo results in a loss of tolerance that is mediated through the downregulation of Cbl-b. Altogether, these data indicate that the PI3K-PKB-GSK-3 pathway is a novel regulatory axis that is important for controlling the decision between T cell activation and tolerance via Cbl-b.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Tolerância Imunológica/fisiologia , Ativação Linfocitária/fisiologia , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Subpopulações de Linfócitos T/enzimologia , Sequência de Aminoácidos , Animais , Autoimunidade/fisiologia , Ativação Enzimática , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Fosfosserina/metabolismo , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/fisiologia , Alinhamento de Sequência , Transdução de Sinais/fisiologia , Especificidade da Espécie , Organismos Livres de Patógenos Específicos , Subpopulações de Linfócitos T/imunologia
13.
Nat Immunol ; 14(1): 27-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23179078

RESUMO

The E3 ligase ARIH2 has an unusual structure and mechanism of elongating ubiquitin chains. To understand its physiological role, we generated gene-targeted mice deficient in ARIH2. ARIH2 deficiency resulted in the embryonic death of C57BL/6 mice. On a mixed genetic background, the lethality was attenuated, with some mice surviving beyond weaning and then succumbing to an aggressive multiorgan inflammatory response. We found that in dendritic cells (DCs), ARIH2 caused degradation of the inhibitor IκBß in the nucleus, which abrogated its ability to sequester, protect and transcriptionally coactivate the transcription factor subunit p65 in the nucleus. Loss of ARIH2 caused dysregulated activation of the transcription factor NF-κB in DCs, which led to lethal activation of the immune system in ARIH2-sufficent mice reconstituted with ARIH2-deficient hematopoietic stem cells. Our data have therapeutic implications for targeting ARIH2 function.


Assuntos
Células Dendríticas/imunologia , Desenvolvimento Embrionário/imunologia , Insuficiência de Múltiplos Órgãos/imunologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Hematopoese/genética , Humanos , Sistema Imunitário/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Insuficiência de Múltiplos Órgãos/genética , NF-kappa B/metabolismo , Ativação Transcricional/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Ubiquitinação/imunologia
14.
Cell ; 144(4): 601-13, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21295337

RESUMO

Understanding the factors that impede immune responses to persistent viruses is essential in designing therapies for HIV infection. Mice infected with LCMV clone-13 have persistent high-level viremia and a dysfunctional immune response. Interleukin-7, a cytokine that is critical for immune development and homeostasis, was used here to promote immunity toward clone-13, enabling elucidation of the inhibitory pathways underlying impaired antiviral immune response. Mechanistically, IL-7 downregulated a critical repressor of cytokine signaling, Socs3, resulting in amplified cytokine production, increased T cell effector function and numbers, and viral clearance. IL-7 enhanced thymic output to expand the naive T cell pool, including T cells that were not LCMV specific. Additionally, IL-7 promoted production of cytoprotective IL-22 that abrogated liver pathology. The IL-7-mediated effects were dependent on endogenous IL-6. These attributes of IL-7 have profound implications for its use as a therapeutic in the treatment of chronic viral diseases.


Assuntos
Interleucina-7/uso terapêutico , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Animais , Antígenos de Diferenciação/metabolismo , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Interleucina-6/imunologia , Interleucina-7/imunologia , Camundongos , Receptor de Morte Celular Programada 1 , Proteínas Recombinantes/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linfócitos T/imunologia
15.
Nat Med ; 15(5): 528-36, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19396174

RESUMO

Identifying key factors that enhance immune responses is crucial for manipulating immunity to tumors. We show that after a vaccine-induced immune response, adjuvant interleukin-7 (IL-7) improves antitumor responses and survival in an animal model. The improved immune response is associated with increased IL-6 production and augmented T helper type 17 cell differentiation. Furthermore, IL-7 modulates the expression of two ubiquitin ligases: Casitas B-lineage lymphoma b (Cbl-b), a negative regulator of T cell activation, is repressed, and SMAD-specific E3 ubiquitin protein ligase-2 (Smurf2) is enhanced, which antagonizes transforming growth factor-beta signaling. Notably, we show that although short term IL-7 therapy potently enhances vaccine-mediated immunity, in the absence of vaccination it is inefficient in promoting antitumor immune responses, despite inducing homeostatic proliferation of T cells. The ability of adjuvant IL-7 to antagonize inhibitory networks at the cellular and molecular level has major implications for immunotherapy in the treatment of tumors.


Assuntos
Infecções por Arenaviridae/imunologia , Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Interleucina-7/uso terapêutico , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Neoplasias/imunologia , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Contagem de Linfócitos , Camundongos , Neoplasias Experimentais/imunologia , Sobreviventes , Linfócitos T Citotóxicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA