Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Ther Med ; 21(3): 223, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33603832

RESUMO

Hepatic ischemia/reperfusion injury (IRI) is a result of the ischemic cascade and may occur in the settings of liver trauma, resection and transplantation. Components of the complement system have been indicated to be mediators of hepatic IRI and regulators of liver regeneration. As such, their potential to mediate both beneficial and harmful effects render them key targets for therapy. In the present study, the mechanisms of complement mediating hepatic IRI were discussed with a focus on the different functions of complement in hepatic injury and liver recovery, and an explanation for this apparent paradox is provided, i.e. that the complement products C3a and C5a have an important role in liver damage; however, C3a and C5a are also necessary for liver regeneration. Furthermore, situated at the end of the complement activation cascade, the membrane attack complex is crucial in hepatic IRI and inhibiting the complex with a site-targeted murine complement inhibitor, complement receptor 2-CD59, may improve liver regeneration after partial hepatectomy, even when hepatectomy is combined with ischemia and reperfusion.

2.
J Cell Biochem ; 120(6): 9964-9978, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30582202

RESUMO

Cholangiocarcinoma (CCA) is a severe malignancy usually producing a poor prognosis and high mortality rate. MicroRNAs (miRNAs) have been reported in association with CCA; however, the role miR-329 plays in the CCA condition still remains unclear. Therefore, this study was conducted to explore the underlying mechanism of which miR-329 is influencing the progression of CCA. This work studied the differential analysis of the expression chips of CCA obtained from the Gene Expression Omnibus database. Next, to determine both the expression and role of pituitary tumor transforming gene-1 (PTTG1) in CCA, the miRNAs regulating PTTG1 were predicted. In the CCA cells that had been intervened with miR-329 upregulation or inhibition, along with PTTG1 silencing, expression of miR-329, PTTG1, p-p38/p38, p-ERK5/ERK5, proliferating cell nuclear antigen (PCNA), Cyclin D1, Bcl-2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and caspase-3 were determined. The effects of both miR-329 and PTTG1 on cell proliferation, cell-cycle distribution, and apoptosis were also assayed. The miR-329 was likely to affect the CCA development through regulation of the PTTG1-mediated mitogen-activated protein kinase (MAPK) signaling pathway. The miR-329 targeted PTTG1, leading to inactivation of the MAPK signaling pathway. Upregulation of miR-329 and silencing of PTTG1 inhibited the CCA cell proliferation, induced cell-cycle arrest, and subsequently promoted apoptosis with elevations in Bax, cleaved caspase-3, and total caspase-3, but showed declines in PCNA, Cyclin D1, and Bcl-2. Moreover, miR-329 was also found to suppress the tumor growth by downregulation of PTTG1. To summarize, miR-329 inhibited the expression of PTTG1 to inactivate the MAPK signaling pathway, thus suppressing the CCA progression, thereby providing a therapeutic basis for the CCA treatment.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Proliferação de Células , Colangiocarcinoma/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Proteínas de Neoplasias/biossíntese , RNA Neoplásico/metabolismo , Securina/biossíntese , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Humanos , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Securina/genética
3.
World J Hepatol ; 10(10): 662-669, 2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30386459

RESUMO

The complement system is a key component of the body's immune system. When abnormally activated, this system can induce inflammation and damage to normal tissues and participate in the development and progression of a variety of diseases. In the past, many scholars believed that alcoholic liver disease (ALD) is induced by the stress of ethanol on liver cells, including oxidative stress and dysfunction of mitochondria and protease bodies, causing hepatocyte injury and apoptosis. Recent studies have shown that complement activation is also involved in the genesis and development of ALD. This review focuses on the roles of complement activation in ALD and of therapeutic intervention in complement-activation pathways. We intend to provide new ideas on the diagnosis and treatment of ALD.

4.
PLoS One ; 7(2): e31200, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22319618

RESUMO

Electrospinning is a simple and efficient method of fabricating a non-woven polymeric nanofiber matrix. However, using fluorinated alcohols as a solvent for the electrospinning of proteins often results in protein denaturation. TEM and circular dichroism analysis indicated a massive loss of triple-helical collagen from an electrospun collagen (EC) matrix, and the random coils were similar to those found in gelatin. Nevertheless, from mechanical testing we found the Young's modulus and ultimate tensile stresses of EC matrices were significantly higher than electrospun gelatin (EG) matrices because matrix stiffness can affect many cell behaviors such as cell adhesion, proliferation and differentiation. We hypothesize that the difference of matrix stiffness between EC and EG will affect intracellular signaling through the mechano-transducers Rho kinase (ROCK) and focal adhesion kinase (FAK) and subsequently regulates the osteogenic phenotype of MG63 osteoblast-like cells. From the results, we found there was no significant difference between the EC and EG matrices with respect to either cell attachment or proliferation rate. However, the gene expression levels of OPN, type I collagen, ALP, and OCN were significantly higher in MG63 osteoblast-like cells grown on the EC than in those grown on the EG. In addition, the phosphorylation levels of Y397-FAK, ERK1/2, BSP, and OPN proteins, as well as ALP activity, were also higher on the EC than on the EG. We further inhibited ROCK activation with Y27632 during differentiation to investigate its effects on matrix-mediated osteogenic differentiation. Results showed the extent of mineralization was decreased with inhibition after induction. Moreover, there is no significant difference between EC and EG. From the results of the protein levels of phosphorylated Y397-FAK, ERK1/2, BSP and OPN, ALP activity and mineral deposition, we speculate that the mechanism that influences the osteogenic differentiation of MG63 osteoblast-like cells on EC and EG is matrix stiffness and via ROCK-FAK-ERK1/2.


Assuntos
Colágeno/farmacologia , Gelatina/farmacologia , Osteoblastos/citologia , Adesão Celular , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Quinase 1 de Adesão Focal , Humanos , Sistema de Sinalização das MAP Quinases , Quinases Associadas a rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA