Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Sci Total Environ ; 953: 176062, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244056

RESUMO

It has been widely acknowledged that high temperatures and heatwaves promote ozone concentration, worsening the ambient air quality. However, temperature can impact ozone via multiple pathways, and quantifying each path is challenging due to environmental confounders. In this study, we frame the problem as a treatment-outcome issue and utilize a machine learning-aided causal inference technique to disentangle the impact of temperature on ozone formation. Our approach reveals that failing to account for the covariations of solar radiation and other meteorological factors leads to an overestimation of the O3-temperature response. Through process evaluation, we find that temperature influences local ozone formation mainly by accelerating chemical reactions and enhancing precursor production and changing boundary layer heights. The O3 response to temperature via enhancing soil NOx and changing relative humidity and wind field is however observable. A better appreciation of O3-temperature response is critical for improving air quality regulation in the warming future.

2.
Environ Sci Technol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300776

RESUMO

Brown carbon (BrC) from biomass burning constitutes a significant portion of light-absorbing components in the atmosphere. Although the aging of BrC surrogates from biomass burning has been studied in many laboratory settings, BrC aging behavior in real-world urban environments is not well understood. In this study, through a combination of online dynamic monitoring and offline molecular characterization, the ambient optical aging of BrC was linked to its dynamic changes in molecular composition. Enhanced light absorption by BrC was consistently observed during the periods dominated by oxygenated biomass burning organic aerosol (BBOA), in contrast to periods dominated by primary emissions or secondary formation in aqueous-phase. This enhancement was linked to the formation of nitrogen-containing compounds during the ambient aging of BBOA. Detailed molecular characterization, alongside analysis of environmental parameters, revealed that an increased atmospheric oxidizing capacity, marked by elevated levels of ozone and nighttime NO3 radicals, facilitated the formation of nitrated aromatic BrC chromophores. These chromophores were primarily responsible for the enhanced light absorption during the ambient aging of BBOA. This study elucidates the nitration processes that enhance BrC light absorption for ambient BBOA, and highlights the crucial role of meteorological conditions. Furthermore, our findings shed light on the chemical and optical aging processes of biomass burning BrC in ambient air, offering insights into its environmental behavior and effects.

3.
Biomed Pharmacother ; 177: 117092, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38976956

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a disease characterized by neuroinflammation and cognitive dysfunction caused by systemic infection. Inflammation-induced microglial activation is closely associated with neuroinflammation in SAE. It is widely understood that melatonin has strong anti-inflammatory and immunomodulatory properties beneficial for sepsis-related brain damage. However, the mechanism of melatonin action in SAE has not been fully elucidated. METHODS: The SAE cell model and SAE mouse model were induced by lipopolysaccharide (LPS). Behavioral tests were performed to analyze cognitive function. Microglial markers and M1/M2 markers were measured by immunofluorescence. Mitophagy was assessed by western blot, mt-Keima and transmission electron microscopy experiments. Immunoprecipitation and co-immunoprecipitation assays investigated the interactions between AMP-activated protein kinase α2 (AMPKα2) and PTEN-induced putative kinase 1 (PINK1). RESULTS: Melatonin suppresses LPS-induced microglia M1 polarization by enhancing mitophagy, thereby attenuating LPS-induced neuroinflammation and behavioral deficits. However, inhibition or knockdown of AMPKα2 can inhibit the enhancement of melatonin on mitophagy, then weaken its promotion of microglia polarization towards M2 phenotype, and eliminate its protective effect on brain function. Furthermore, melatonin enhances mitophagy through activating AMPKα2, promotes PINK1 Ser495 site phosphorylation, and ultimately regulates microglial polarization from M1 to M2. CONCLUSIONS: Our findings demonstrate that melatonin facilitates microglia polarization towards M2 phenotype to alleviate LPS-induced neuroinflammation, primarily through AMPKα2-mediated enhancement of mitophagy.


Assuntos
Proteínas Quinases Ativadas por AMP , Lipopolissacarídeos , Melatonina , Microglia , Mitofagia , Encefalopatia Associada a Sepse , Melatonina/farmacologia , Animais , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Mitofagia/efeitos dos fármacos , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Quinases/metabolismo , Modelos Animais de Doenças , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Linhagem Celular , Polaridade Celular/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo
4.
J Hazard Mater ; 477: 135341, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39079303

RESUMO

The Tibetan Plateau, known as the "Third Pole", is susceptible to ground-level ozone (O3) and fine particulate matter (PM2.5) pollution due to its unique high-altitude environment. This study constructed random forest regression models using multi-source data from ground measurements and meteorological satellites to predict variations in ground-level O3 and PM2.5 concentrations and their influencing factors across seven major cities in the Tibetan Plateau over two-year periods. The models successfully reproduced O3 and PM2.5 levels with satisfactory R-squared values of 0.71 and 0.73, respectively. Results reveal combustion-related carbon monoxide (CO) and nitrogen dioxide (NO2) as the most substantial influences on O3 and PM2.5 concentrations. Solar radiation, geographical factors, and meteorological variables also played crucial roles in driving pollutant variations. Conversely, transport-related and human activity factors exhibited relatively lower significance. High O3 and PM2.5 pollution occurred during pre-monsoon and post-monsoon/winter seasons, driven by solar radiation and emissions, respectively. While CO consistently contributed across cities and seasons, key influencing factors varied locally. This study unveils the key driving forces governing air pollutant variations across the Tibetan Plateau, shedding light on complex atmospheric processes in this unique high-altitude region.

5.
Minerva Anestesiol ; 90(3): 200-209, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37987992

RESUMO

INTRODUCTION: Ensuring effective perioperative pain control is a crucial aspect of rehabilitation programs following total hip arthroplasty. This study presents a comprehensive meta-analysis and systematic review to assess the efficacy and safety of pericapsular nerve group block (PENG) in the context of total hip arthroplasty. EVIDENCE ACQUISITION: A systematic search was conducted in multiple databases, including PubMed, Embase, Cochrane Library, and Web of Science, to identify relevant randomized controlled studies investigating the efficacy and safety of PENG for total hip arthroplasty. The search was conducted up until 1st June 2023. Data analysis was performed using Stata v. 15.0. EVIDENCE SYNTHESIS: A total of 721 individuals participated in this study, which included 13 randomized controlled trials. Among them, 377 individuals were assigned to the experimental group, while 344 individuals were assigned to the control group. The findings from the meta-analysis indicated that the application of PENG yielded favorable outcomes in terms of reducing six-hour pain scores (SMD=-0.63, 95% CI -1.18, -0.09) and 24-hour pain scores (SMD=-1.45, 95% CI -2.51, -0.29). Moreover, it was found to decrease opioid consumption (SMD=-0.84, 95% CI -1.35, -0.34), without causing a significant increase in nausea and vomiting (RR=0.75, 95% CI 0.45, 1.23) or urinary retention (RR=2.46, 95% CI 0.49, 12.31). CONCLUSIONS: Based on the latest findings, PENG has been shown to effectively decrease pain scores within six and 24 hours following total hip arthroplasty. However, its effectiveness in pain control diminishes after 48 hours. Additionally, PENG has demonstrated the ability to reduce opioid consumption without an accompanying increase in adverse drug events.


Assuntos
Artroplastia de Quadril , Bloqueio Nervoso , Humanos , Analgésicos Opioides , Dor Pós-Operatória/etiologia , Nervo Femoral , Bloqueio Nervoso/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
J Biomol Struct Dyn ; : 1-19, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921741

RESUMO

Chronic heart failure (CHF) is the primary cause of death among patients with cardiovascular diseases, representing the advanced stage in the development of several cardiovascular conditions. Zhenwu decoction (ZWD) has gained widespread recognition as an efficacious remedy for CHF due to its potent therapeutic properties and absence of adverse effects. Nevertheless, the precise molecular mechanisms underlying its actions remain elusive. This study endeavors to unravel the intricate pharmacological underpinnings of five herbs within ZWD concerning CHF through an integrated approach. Initially, pertinent data regarding ZWD and CHF were compiled from established databases, forming the foundation for constructing an intricate network of active component-target interactions. Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. Enrichment analysis of the CCG targets unveiled the potential coordinated molecular mechanisms of ZWD, illuminating its capacity to ameliorate CHF by modulating genes and related signaling pathways involved in pathological remodeling. Notable pathways encompass PI3K-Akt, diabetic cardiomyopathy, cAMP and MAPK signaling. Concluding the computational analyses, in vitro experiments were executed to assess the effects of vanillic acid, paradol, 10-gingerol and methyl cinnamate. Remarkably, these compounds demonstrated efficacy in reducing the production of ANP and BNP within isoprenaline-induced AC 16 cells, further validating their potential therapeutic utility. This investigation underscores the efficacy of the proposed model in enhancing the precision and reliability of CCG selection within ZWD, thereby presenting a novel avenue for mechanistic inquiries, compound refinement and the secondary development of TCM herbs.

7.
Can J Anaesth ; 70(1): 106-115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36109453

RESUMO

PURPOSE: Recently, more attention has been given to the costoclavicular space (CCS) as an alternative pathway for ultrasound-guided brachial plexus block (BPB). While 0.5% ropivacaine was used in most related studies, research has shown effective ultrasound-guided supraclavicular BPB using lower local anesthetic concentrations, and our preliminary data have indicated that 0.375% ropivacaine may be effective when given in the CCS. Hence, we hypothesized that the efficacy of 0.375% ropivacaine would be noninferior compared with 0.5% in ultrasound-guided BPB via the CCS. METHODS: We conducted a randomized, double-blind, single-centre, noninferiority clinical trial. Seventy patients undergoing elective forearm or hand surgery were randomly assigned to receive either 20 mL of 0.375% ropivacaine (experimental group) or 0.5% ropivacaine (control group) in the CCS for BPB. We assessed sensory and motor blockade at five, ten, 15, 20, 25, and 30 min after the injection. The primary outcome was the rate of successful BPB. Secondary outcomes included onset time, duration of sensory and motor blockade, and adverse reactions. The depth from the skin to the CCS was also recorded during the procedure. RESULTS: A total of 69 patients were evaluable for block success. There was one failed block in both groups, yielding a BPB block success rate of 97% in both groups. 0.375% Ropivacaine was noninferior to 0.5% ropivacaine (P = 0.98). There was no significant difference in the median [interquartile range (IQR)] onset time of sensory-motor blockade in the experimental group (15 [15-20] min; N = 34) compared with the control group (15 [13-20] min; N = 33; Mann-Whitney test, P = 0.48). The median [IQR] duration of sensory blockade was significantly shorter in the experimental group (455 [398-490] min vs 610 [570-655] min in the control group; Hodges-Lehmann estimator of the difference, 165 min; 95.08% confidence interval (CI), 130 to 195; P < 0.001). Likewise, the median [IQR] duration of motor blockade was significantly shorter in the experimental group (470 [409-500] min vs 625 [578-665] min in the control group; Hodges-Lehmann estimator of the difference, 165 min; 95.08% CI, 130 to 195; P < 0.001). There were no adverse reactions directly related to the technique or the ropivacaine injection in either group. CONCLUSIONS: 0.375% Ropivacainewas noninferior to 0.5% ropivacaine with regard to rate of successful ultrasound-guided costoclavicular BPB. STUDY REGISTRATION: chictr.org.cn (ChiCTR20000306570); registered 8 March 2020.


RéSUMé: OBJECTIF: L'espace costo-claviculaire (ECC) a récemment bénéficié d'un regain d'intérêt comme voie de substitution pour le bloc du plexus brachial (BPB) échoguidé. La ropivacaïne 0,5 % a été utilisée dans la majorité des études sur ce sujet, mais la recherche a montré un BPB supra-claviculaire échoguidé efficace en utilisant de plus faibles concentrations d'anesthésique local et nos données préliminaires ont indiqué que la ropivacaïne à 0,375 % pouvait être efficace en administration dans l'ECC. En conséquence, nous avons émis l'hypothèse selon laquelle l'efficacité de la ropivacaïne 0,375 % serait non inférieure à la ropivacaïne 0,5 % dans le BPB échoguidé via l'ECC. MéTHODES: Nous avons mené un essai clinique monocentrique de non-infériorité, randomisée en double insu. Soixante-dix patients subissant une chirurgie élective de l'avant-bras ou de la main ont été randomisés dans un groupe recevant 20 mL de ropivacaïne 0,375 % (groupe expérimental) ou de ropivacaïne 0,5 % (groupe contrôle) dans l'ECC pour un BPB. Nous avons évalué les blocs sensoriel et moteur à 5, 10, 15, 20, 25 et 30 minutes après l'injection. Le critère d'évaluation principal était le taux de succès du BPB. Les critères d'évaluation secondaires étaient, notamment, le délai d'action, la durée des blocs sensoriel et moteur, et les événements indésirables. La profondeur de la peau à l'ECC a aussi été consignée pendant la procédure. RéSULTATS: Un total de 69 patients était évaluable pour le succès du bloc. Il y a eu un échec du bloc dans chacun des deux groupes, ramenant le taux de succès du BPB à 97 % dans les deux groupes. La ropivacaïne 0,375 % a été non inférieure à la ropivacaïne 0,5 % (P = 0,98). Il n'y a pas eu de différence significative concernant le délai d'action médian (plage interquartile [PIQ]) du bloc sensori-moteur dans le groupe expérimental (15 [15 à 20] minutes; n = 34) comparativement au groupe contrôle (15 [13 à 20] minutes; n = 33; test de Mann­Whitney, P = 0,48). La durée médiane [PIQ] du bloc sensitif a été significativement plus courte dans le groupe expérimental (455 [398 à 490] minutes contre 610 [570 à 655] minutes dans le groupe contrôle; estimateur de la différence de Hodges­Lehmann, 165 minutes; intervalle de confiance [IC] à 95,08 % : 130 à 195; P < 0,001). De même, la durée médiane [PIQ] du bloc moteur a été significativement plus courte dans le groupe expérimental (470 [409 à 500] minutes contre 625 [578 à 665] minutes dans le groupe contrôle; estimateur de la différence de Hodges­Lehmann, 165 minutes; IC à 95,08 %, 130 à 195; P < 0,001). Il n'y a pas eu d'événement indésirable directement lié à la technique ou à l'injection de ropivacaïne dans l'un ou l'autre groupe. CONCLUSIONS: La ropivacaïne 0,375 % a été non inférieure à la ropivacaïne 0,5 % en ce qui concerne le taux de succès du BPB costo-claviculaire échoguidé. ENREGISTREMENT DE L'éTUDE: chictr.org.cn (ChiCTR20000306570); Enregistrée le 8 mars 2020.


Assuntos
Bloqueio do Plexo Braquial , Humanos , Bloqueio do Plexo Braquial/métodos , Ropivacaina , Anestésicos Locais/efeitos adversos , Extremidade Superior , Ultrassonografia
8.
Sci Total Environ ; 862: 160757, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502685

RESUMO

Glyoxal (Gly) and methylglyoxal (Mgly) are key precursors globally for secondary organic aerosol (SOA) formation. These two species were often thought to be formed in the atmosphere via photochemical oxidation of organics from biogenic and anthropogenic origins, although few studies have shown their direct emissions. In this study, we report direct emissions of particulate Gly and Mgly from different residential fuels typically used in north China. The emission ratios (ERs) and emission factors (EFs) of particulate Gly and Mgly for biomass burning were approximate 5-fold and 7-fold higher than those for coal combustion, respectively. The large variances in emissions of Gly and Mgly could be attributed to the different combustion processes, which influenced by the fuel types and combustion conditions. The averaged ERs and EFs of particulate Gly and Mgly were about one order of magnitude lower than their gaseous counterparts due to the low Henry's law constant, which was also consistent with the low particle-to-gas ratio of Gly (0.04) and Mgly (0.02). Our results suggest that the direct emissions of Gly and Mgly from emission sources should be considered when estimating the formation of SOA from Gly and Mgly.


Assuntos
Poluentes Atmosféricos , Aldeído Pirúvico , Aldeído Pirúvico/análise , Carvão Mineral , Poluentes Atmosféricos/análise , Glioxal/análise , Biomassa , Poeira , China , Material Particulado/análise , Aerossóis/análise
9.
NPJ Clim Atmos Sci ; 5(1): 99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530483

RESUMO

Staggered-peak production (SP)-a measure to halt industrial production in the heating season-has been implemented in North China Plain to alleviate air pollution. We compared the variations of PM1 composition in Beijing during the SP period in the 2016 heating season (SPhs) with those in the normal production (NP) periods during the 2015 heating season (NPhs) and 2016 non-heating season (NPnhs) to investigate the effectiveness of SP. The PM1 mass concentration decreased from 70.0 ± 54.4 µg m-3 in NPhs to 53.0 ± 56.4 µg m-3 in SPhs, with prominent reductions in primary emissions. However, the fraction of nitrate during SPhs (20.2%) was roughly twice that during NPhs (12.7%) despite a large decrease of NOx, suggesting an efficient transformation of NOx to nitrate during the SP period. This is consistent with the increase of oxygenated organic aerosol (OOA), which almost doubled from NPhs (22.5%) to SPhs (43.0%) in the total organic aerosol (OA) fraction, highlighting efficient secondary formation during SP. The PM1 loading was similar between SPhs (53.0 ± 56.4 µg m-3) and NPnhs (50.7 ± 49.4 µg m-3), indicating a smaller difference in PM pollution between heating and non-heating seasons after the implementation of the SP measure. In addition, a machine learning technique was used to decouple the impact of meteorology on air pollutants. The deweathered results were comparable with the observed results, indicating that meteorological conditions did not have a large impact on the comparison results. Our study indicates that the SP policy is effective in reducing primary emissions but promotes the formation of secondary species.

10.
Front Neurosci ; 16: 889292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677353

RESUMO

Celastrol plays a significant role in cerebral ischemia-reperfusion injury. Although previous studies have confirmed that celastrol post-treatment has a protective effect on ischemic stroke, the therapeutic effect of celastrol on ischemic stroke and the underlying molecular mechanism remain unclear. In the present study, focal transient cerebral ischemia was induced by transient middle cerebral artery occlusion (tMCAO) in mice and celastrol was administered immediately after reperfusion. We performed lncRNA and mRNA analysis in the ischemic hemisphere of adult mice with celastrol post-treatment through RNA-Sequencing (RNA-Seq). A total of 50 differentially expressed lncRNAs (DE lncRNAs) and 696 differentially expressed mRNAs (DE mRNAs) were identified between the sham and tMCAO group, and a total of 544 DE lncRNAs and 324 DE mRNAs were identified between the tMCAO and tMCAO + celastrol group. Bioinformatic analysis was done on the identified deregulated genes through gene ontology (GO) analysis, KEGG pathway analysis and network analysis. Pathway analysis indicated that inflammation-related signaling pathways played vital roles in the treatment of ischemic stroke by celastrol. Four DE lncRNAs and 5 DE mRNAs were selected for further validation by qRT-PCR in brain tissue, primary neurons, primary astrocytes, and BV2 cells. The results of qRT-PCR suggested that most of selected differentially expressed genes showed the same fold change patterns as those in RNA-Seq results. Our study suggests celastrol treatment can effectively reduce cerebral ischemia-reperfusion injury. The bioinformatics analysis of lnRNAs and mRNAs profiles in the ischemic hemisphere of adult mice provides a new perspective in the neuroprotective effects of celastrol, particularly with regards to ischemic stroke.

11.
Environ Int ; 166: 107325, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716508

RESUMO

Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.

12.
J Environ Sci (China) ; 114: 365-375, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35459499

RESUMO

The health effects of trace metal elements in atmospheric fine particulate matter (PM2.5) are widely recognized, however, the emission factor profiles and chemical fractionation of metal elements in different sources were poorly understand. In this study, sixteen metal elements, including Cd, Pb, V, Zn, Ba, Sb, As, Fe, Sr, Cr, Rb, Co, Mn, Cu, Ni and Sn from biomass burning, bituminite and anthracite combustion, as well as dust, were quantified. The results show different emission sources were associated with distinct emission profiles, holding important implications for source apportionment of ambient particulate metals. Specifically, Fe was the dominant metal species (28-1922 mg/kg) for all samples, and was followed by different metals for different samples. For dust, Mn (39.9 mg/kgdust) had the second-highest emission factor, while for biomass burning, it was Cr and Ba (7.5 and 7.4 mg/kgbiomass, respectively). For bituminous coal combustion, the emission factor of Zn and Ba was 6.2 and 6.0 mg/kgbituminous, respectively, while for anthracite combustion the corresponding emission factor was 5.6 and 4.3 mg/kganthracite, respectively. Moreover, chemical fractionation (i.e., the exchangeable, reducible fraction, oxidizable, and residual fraction) and the bioavailability index (BI) values of the metal elements from different sources were further investigated to reveal the link between different emission sources and the potential health risk. The findings from this study hold important implications for source apportionment and source-specific particulate metal-associated health effects.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Oligoelementos , Poluentes Atmosféricos/análise , Fracionamento Químico , Carvão Mineral , Poeira , Monitoramento Ambiental/métodos , Metais/análise , Metais Pesados/análise , Material Particulado/análise , Oligoelementos/análise
13.
Toxics ; 10(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324746

RESUMO

An Aerosol Chemical Speciation Monitor (ACSM) was deployed to investigate the temporal variability of non-refractory particulate matter (NR-PM1) in the coastal city of Galway, Ireland, from February to July 2016. Source apportionment of the organic aerosol (OA) was performed using the newly developed rolling PMF strategy and was compared with the conventional seasonal PMF. Primary OA (POA) factors apportioned by rolling and seasonal PMF were similar. POA factors of hydrocarbon-like OA (HOA), peat, wood, and coal were associated with domestic heating, and with an increased contribution to the OA mass in winter. Even in summer, sporadic heating events occurred with similar diurnal patterns to that in winter. Two oxygenated OA (OOA) factors were resolved, including more-oxygenated OOA and less-oxygenated OOA (i.e., MO-OOA and LO-OOA, accordingly) which were found to be the dominant OA factors during summer. On average, MO-OOA accounted for 62% of OA and was associated with long-range transport in summer. In summer, compared to rolling PMF, the conventional seasonal PMF over-estimated LO-OOA by nearly 100% while it underestimated MO-OOA by 30%. The results from this study show residential heating and long-range transport alternately dominate the submicron aerosol concentrations in this coastal city, requiring different mitigation strategies in different seasons.

14.
Environ Pollut ; 299: 118907, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091017

RESUMO

Worship activities like burning joss paper during the Chinese Hanyi festival is a common, traditional custom in northwest China. However, the pollutants of e.g., soot particles, released from joss paper burning and the corresponding impacts on urban air quality were poorly investigated, which can be a particular concern since these activities are conducted in an uncontrolled manner. In this study, a long time-of-flight (LToF) soot particle aerosol mass spectrometry (SP-AMS) was deployed to characterize the refractory black carbon (rBC) emitted from the joss paper burning, as well as crop residue, coal combustion, and traffic during the Hanyi Festival in mid-November 2020 in the northwestern city of Xi'an in China. Large difference (from <5% to >100%) in the fragmentation patterns (Cn+) for the measured rBC from different source emissions were found when compared to the reference Regal Black. Using the receptor model of positive matrix factorization (PMF) with the multilinear engine (ME-2) algorithm, the obtained rBC mass spectra were used as the anchoring profiles to evaluate the emission strengths of different source types to the atmospheric rBC. Our results show that the burning of joss paper accounted for up to 42% of the atmospheric rBC mass, higher than traffic (14-17%), crop residue (10-17%), coal (18-20%) during the Hanyi festival in northwest China. Moreover, we show that the overall air quality can be worsened due to the practice of uncontrolled burning of joss paper during the festival, which is not just confined to the people who do the burning. Although worship activities occur mainly during festival periods, the pollution events contributed by joss paper burning may pose an acute exposure risk for public health. This is particularly important since burning joss paper during worship activities is common in China and most Asian countries with similar traditions.


Assuntos
Poluentes Atmosféricos , Fuligem , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Humanos , Material Particulado/análise , Estações do Ano , Fuligem/análise
15.
Sci Total Environ ; 818: 151700, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34798089

RESUMO

Air pollution studies have often overlooked the contribution from cooking to the particle-bound polycyclic aromatic hydrocarbons (PAHs) in the ambient environment, despite cooking emissions have been identified as an important source of organic aerosol in most urban areas, known as the cooking-like organic aerosol factor (i.e., COA). In this study, a Long-Time-of-Flight (LToF) soot particle aerosol mass spectrometer (SP-AMS) was deployed to evaluate the impact of cooking emissions on outdoor particle-bound PAHs levels during a summer campaign in 2019 in Xi'an China. Combined with the robust receptor model, cooking emission was found to be the major source of ambient PAHs, on average, accounting for 90% of PAHs, 9 times higher than traffic (10%). The ambient cooking PAH profile was well correlated (r2 of 0.87) with that for frying oil fume, suggesting cooking oil was the major source of PAHs instead of the food being cooked. We further evaluated the health risk associated with the cooking PAHs and estimated the cooking PAH levels in some of the major cities in the world where COA factor has been reported. The results show the particle-bound PAHs from cooking can be an important source of ambient PAHs in most Chinese cities. The findings from this study hold important implications for public health and are informing for policymakers.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , China , Culinária/métodos , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
16.
Energy Fuels ; 35(6): 4966-4978, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-34276128

RESUMO

Solid-fuel stoves are at the heart of many homes not only in developing nations, but also in developed regions where there is significant deployment of such heating appliances. They are often operated inefficiently and in association with high emission fuels like wood. This leads to disproportionate air pollution contributions. Despite the proliferation of these appliances, an understanding of particulate matter (PM) emissions from these sources remains relatively low. Emissions from five solid fuels are quantified using a "conventional" and an Ecodesign stove. PM measurements are obtained using both "hot filter" sampling of the raw flue gas, and sampling of cooled, diluted flue gas using an Aerosol Chemical Speciation Monitor and AE33 aethalometer. PM emissions factors (EF) derived from diluted flue gas incorporate light condensable organic compounds; hence they are generally higher than those obtained with "hot filter" sampling, which do not. Overall, the PM EFs ranged from 0.2 to 108.2 g GJ-1 for solid fuels. The PM EF determined for a solid fuel depends strongly on the measurement method employed and on user behavior, and less strongly on secondary air supply and stove type. Kerosene-based firelighters were found to make a disproportionately high contribution to PM emissions. Organic aerosol dominated PM composition for all fuels, constituting 50-65% of PM from bituminous and low-smoke ovoids, and 85-95% from torrefied olive stone (TOS) briquettes, sod peat, and wood logs. Torrefied biomass and low-smoke ovoids were found to yield the lowest PM emissions. Substituting these fuels for smoky coal, peat, and wood could reduce PM2.5 emissions by approximately 63%.

17.
Sci Total Environ ; 791: 148126, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34119790

RESUMO

Enhanced secondary aerosol formation was observed during the COVID-19 lockdown in Xi'an, especially for polluted episodes. More oxidized­oxygenated organic aerosol (MO-OOA) and sulfate showed the dominant enhancements, especially in large particle-mode. Meanwhile, relative humidity (RH) showed a positive promotion on the formation of sulfate and MO-OOA during the lockdown, but had no obvious correlation with less oxidized­oxygenated organic aerosol (LO-OOA) or nitrate. Organosulfurs (OS) displayed a higher contribution (~58%) than inorganic sulfate to total sulfate enhancement in the polluted episode during the lockdown. Although the total nitrate (TN) decreased during the lockdown ascribing to a larger reduction of inorganic nitrate, organic nitrate (ON) showed an obvious increase from pre-lockdown (0.5 ± 0.6 µg m-3 and 1 ± 2% of TN) to lockdown (5.3 ± 3.1 µg m-3 and 17 ± 9% of TN) in the polluted case (P < 0.05). In addition, RH also displayed a positive promotion on the formation of ON and OS, and the increases of both OS and ON were much efficient in the nighttime than in the daytime. These results suggest that higher RH and stagnant meteorology might facilitate the sulfate and MO-OOA enhancement, especially in the nighttime, which dominated the secondary aerosol enhancement in haze pollution during the lockdown.


Assuntos
Poluentes Atmosféricos , COVID-19 , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Material Particulado/análise , SARS-CoV-2
18.
Sci Total Environ ; 778: 144947, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33725613

RESUMO

The COVID-19 pandemic has drastically affected the economic and social activities, leading to large reductions in anthropogenic emissions on a global scale. Despite the reduction of primary emissions during the lockdown period, heavy haze pollution was observed unexpectedly in megacities in North and East China. In this study, we conducted online measurements of organic aerosol in a background site before and during the lockdown in Guanzhong basin, Northwest China. The oxygenated organic aerosol (OOA) increased from 24% of total OA (3.2 ± 1.6 µg m-3) before lockdown to 54% of total OA (4.5 ± 1.3 µg m-3) during lockdown, likely due to substantial decrease of NOx emissions during lockdown which resulted in large increase of O3 and thus atmospheric oxidizing capacity. OOA showed higher mass concentrations and fractional contributions during lockdown than before lockdown, and increased with the increase of Ox in both periods. In comparison, aqueous secondary organic aerosol (aqSOA) showed high mass concentrations and fractional contributions in both polluted periods before and during lockdown with the increase of aerosol liquid water content (ALWC). The increase of aqSOA under high ALWC conditions is very likely the reason of pollution events during lockdown. Combined with trajectory analysis, the absence of Guanzhong cluster in polluted period during lockdown may play a key role in the OA variations between two polluted periods. In addition, when comparing the clusters from the same transmission directions between before lockdown and during lockdown, the OA fractions showed similar variations during lockdown in all clusters, suggesting the OA variations are widespread in northwest China.


Assuntos
Poluentes Atmosféricos , COVID-19 , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Oxirredução , Pandemias , Material Particulado/análise , SARS-CoV-2
19.
Sci Total Environ ; 756: 144077, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33280860

RESUMO

Secondary organic aerosol (SOA) is an important contributor to organic aerosol (OA), however, the model simulations of SOA concentrations and oxidation states remain significant uncertainties because of inadequate cognition of its formation and aging chemistry. In this study, SOA formation and evolution processes during summer in Xi'an were investigated, based on high-resolution online measurements of non-refractory PM2.5 (NR-PM2.5) species and OA source apportionment using positive matrix factorization. The results showed that the total SOA, including less oxidized-oxygenated OA (LO-OOA), more oxidized-oxygenated OA (MO-OOA), and aqueous-phase-processed oxygenated OA (aq-OOA), on average constituted 69% of OA, and 43% of NR-PM2.5, suggesting the high atmospheric oxidation capacity and the dominance of SOA during summer in Xi'an. Photochemical oxidation processes dominated the summertime SOA formation both during non-fog-rain days and fog-rain days, which were responsible for the formation of both LO-OOA and MO-OOA. Consistently, LO-OOA and MO-OOA in total contributed 59% to OA during non-fog-rain days and 56% to OA during fog-rain days, respectively. On the contrary, aq-OOA was mainly observed during fog-rain days, which increased dramatically from 2% of OA during non-fog-rain days to 19% of OA during fog-rain days with the mass concentration increasing accordingly from 0.3 µg m-3 to 2.5 µg m-3. Episodic analyses further highlighted the persistently high RH period with high aerosol liquid water content (ALWC) was the driving factor of aq-OOA formation, and high Ox condition could further enhance its formation. Meanwhile, air masses from east and southeast were much favorable for the formation of long-time fog-rain days, which facilitated aq-OOA production during summer in Xi'an.

20.
Sci Total Environ ; 737: 139666, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526566

RESUMO

The Guanzhong basin is a part of the three top priority regions in China's blue sky action as of 2019. Understanding the chemical composition, sources, and atmospheric process of aerosol in this region is therefore imperative for improving air quality. In this study, we present, for the first time, the seasonal variations of organic aerosol (OA) in Xi'an, the largest city in the Guanzhong basin. Biomass burning OA (BBOA) and oxidized OA (OOA) contributed >50% of OA in both autumn and winter. The average concentrations of BBOA in autumn (14.8 ± 5.1 µg m-3) and winter (11.6 ± 6.8 µg m-3) were similar. The fractional contribution of BBOA to total OA, however, decreased from 31.9% in autumn to 15.3% in winter, because of enhanced contributions from other sources in winter. The OOA fraction in OA increased largely from 20.9% in autumn to 34.9% in winter, likely due to enhanced emissions of precursors and stagnant meteorological conditions which facilitate the accumulation and secondary formation. A large increase in OOA concentration was observed during polluted days, by a factor of ~4 in autumn and ~6 in winter compared to clean days. In both seasons, OOA formation was most likely dominated by photochemical oxidation when aerosol liquid water content was <30 µg m-3 or by aqueous-phase processes when Ox was <35 ppb. A higher concentration of BBOA was observed for air masses circulated within the Guanzhong basin (16.5-18.1 µg m-3), compared to air masses from Northwest and West (10.9-14.5 µg m-3). Furthermore, compared with OA fraction in non-refractory PM1 in other regions of China, BBOA (17-19%) and coal combustion OA (10-20%) were major emission sources in the Guanzhong Basin and the BTH region, respectively, whereas OOA (10-34%) was an important source in all studied regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA