Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 10(12): 11258-11265, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024326

RESUMO

Semiconducting single-walled carbon nanotube (s-SWNT) light sensitized devices, such as infrared photodetectors and solar cells, have recently been widely reported. Despite their excellent individual electrical properties, efficient carrier transport from one carbon nanotube to another remains a fundamental challenge. Specifically, photovoltaic devices with active layers made from s-SWNTs have suffered from low efficiencies caused by three main challenges: the overwhelming presence of high-bandgap polymers in the films, the weak bandgap offset between the LUMO of the s-SWNTs and the acceptor C60, and the limited exciton diffusion length from one SWNT to another of around 5 nm that limits the carrier extraction efficiency. Herein, we employ a combination of processing and device architecture design strategies to address each of these transport challenges and fabricate photovoltaic devices with s-SWNT films well beyond the exciton diffusion limit of 5 nm. While our solution processing method minimizes the presence of undesired polymers in our active films, our interfacial designs led to a significant increase in current generation with the addition of a highly doped C60 layer (n-doped C60), resulting in increased carrier separation efficiency from the s-SWNTs films. We create a dense interconnected nanoporous mesh of s-SWNTs using solution shearing and infiltrate it with the acceptor C60. Thus, our final engineered bulk heterojunction allows carriers from deep within to be extracted by the C60 registering a 10-fold improvement in performance from our preliminary structures.

2.
Nat Commun ; 5: 3573, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24736391

RESUMO

A crystal's structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs. We observe that thin-film crystallization occurs first at the air-solution interface, and nanoscale vertical spatial confinement of the solution results in formation of metastable polymorphs, a one-dimensional and large-area analogy to crystallization of polymorphs in nanoporous matrices. We demonstrate that metastable polymorphism can be tuned with unprecedented control and produced over large areas by either varying physical confinement conditions or by tuning energetic conditions during crystallization through use of solvent molecules of various sizes.


Assuntos
Cristalização , Compostos de Organossilício , Semicondutores , Cristalografia por Raios X , Eletrônica , Imagem Óptica
3.
ACS Nano ; 5(12): 10026-32, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22053708

RESUMO

Single-walled carbon nanotubes (SWNTs) have shown promise for use in organic electronic applications including thin film transistors, conducting electrodes, and biosensors. Additionally, previous studies found applications for SWNTs in bioelectronic devices, including drug delivery carriers and scaffolds for tissue engineering. There is a current need to rapidly process SWNTs from solution phase to substrates in order to produce device structures that are also biocompatible. Studies have shown the use of surfaces covalently functionalized with primary amines to selectively adsorb semiconducting SWNTs. Here we report the potential of substrates modified with physisorbed polymers as a rapid biomaterials-based approach for the formation of SWNT networks. We hypothesized that rapid surface modification could be accomplished by adsorption of poly-L-lysine (PLL), which is also frequently used in biological applications. We detail a rapid and facile method for depositing SWNTs onto various substrate materials using the amine-rich PLL. Dispersions of SWNTs of different chiralities suspended in N-methylpyrrolidinone (NMP) were spin coated onto various PLL-treated substrates. SWNT adsorption and alignment were characterized by atomic force microscopy (AFM) while electrical properties of the network were characterized by 2-terminal resistance measurements. Additionally, we investigated the relative chirality of the SWNT networks by micro-Raman spectroscopy. The SWNT surface density was strongly dependent upon the adsorbed concentration of PLL on the surface. SWNT adsorbed on PLL-treated substrates exhibited enhanced biocompatibility compared to SWNT networks fabricated using alternative methods such as drop casting. These results suggest that PLL films can promote formation of biocompatible SWNT networks for potential biomedical applications.


Assuntos
Materiais Revestidos Biocompatíveis/síntese química , Membranas Artificiais , Nanotubos de Carbono/química , Polilisina/química , Adsorção , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
4.
Matrix Biol ; 27(1): 12-21, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17689060

RESUMO

Bone marrow-derived mesenchymal stem cells (MSCs) have strong potential in regeneration of musculoskeletal tissues including cartilage and bone. The microenvironment, comprising of scaffold and soluble factors, plays a pivotal role in determining the efficacy of cartilage tissue regeneration from MSCs. In this study, we investigated the effect of a three-dimensional synthetic-biological composite hydrogel scaffold comprised of poly (ethylene glycol) (PEG) and chondroitin sulfate (CS) on chondrogenesis of MSCs. The cells in CS-based bioactive hydrogels aggregated in a fashion which mimicked the mesenchymal condensation and produced cartilaginous tissues with characteristic morphology and basophilic extracellular matrix production. The aggregation of cells resulted in an enhancement of both chondrogenic gene expressions and cartilage specific matrix production compared to control PEG hydrogels containing no CS-moieties. Moreover, a significant down-regulation of type X collagen expression was observed in PEG/CS hydrogels, indicating that CS inhibits the further differentiation of MSCs into hypertrophic chondrocytes. Overall, this study demonstrates the morphogenetic role of bioactive scaffold-mediated microenvironment on temporal pattern of cartilage specific gene expressions and subsequent matrix production during MSC chondrogenesis.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Sulfatos de Condroitina/metabolismo , Células-Tronco Mesenquimais/fisiologia , Alicerces Teciduais , Acrilatos/química , Acrilatos/metabolismo , Animais , Biomarcadores/metabolismo , Sulfatos de Condroitina/química , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Cabras , Hidrogéis , Células-Tronco Mesenquimais/citologia , Estrutura Molecular , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA