Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(37): 34232-34240, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31441635

RESUMO

Shape-persistent conjugated macrocycles are fundamentally important because of their unique structure and properties. Herein, a series of π-conjugated macrocycles with a shape-persistent architecture, an adaptive backbone, and aggregation-induced emission (AIE) properties are synthesized via oxidative coupling of acetylene-terminated tetraphenylethylene precursor with a half-ring topology and following transformation from butadiynylene linkers into thienylene ones. Characterization by NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry provided unambiguous proofs for the macrocyclic structures. In particular, the free rotation of aromatic rings in the rigid macrocyclic backbone was validated by two-dimensional NMR spectroscopy, variable-temperature NMR measurements, and theoretical calculations. Moreover, these shape-persistent macrocyclic chromophores all exhibited obvious AIE phenomena and remarkable mechanofluorochromism behaviors with a red-shifted luminescence upon grinding and blue-shifted emission after solvent annealing. Also, the introduction of S atoms into the macrocyclic frameworks endowed the macrocyclic luminogen the capability to selectively detect mecury(II) ions in aqueous media among other metal ions.

2.
ACS Appl Mater Interfaces ; 11(3): 3516-3523, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30592413

RESUMO

A luminescent liquid crystal molecule (TPEMes) with efficient solid-state emission is rationally constructed via the chemical conjugation of blue-emitting tetraphenylethene cores and luminescent mesogenic tolane moieties, which are both featured with aggregation-induced emission properties. As for this fluorophore, aggregation-induced energy transfer from the emissive tolane mesogens to the lighting-up tetraphenylethene units endows the molecule pure blue emission in the suspension and bulk state. Combining differential scanning calorimetry, polarized optical microscope, and one-dimensional X-ray diffraction (1D XRD) experiments, the compound TPEMes is deduced to adapt thermodynamically more stable layered crystalline phase and can be "frozen" into a monotropic smectic mesophase due to kinetic reasons. As a result of more dense packing of TPEMes in the crystalline phase indicated by 1D XRD, the luminescence of TPEMes in crystalline phase blue-shifted by 17 nm relative to the metastable mesophase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA