RESUMO
The gut microbiota plays an important role in the development and treatment of hepatocellular carcinoma (HCC). However, the implication of specific gut microbiota in targeted sorafenib therapy for advanced HCC and the microbiota mode of action, remain to be elucidated. Here, we confirmed that four bacterial genera, Lachnoclostridium, Lachnospira, Enterobacter and Enterococcus, are associated with the therapeutic efficacy of Sorafenib, and that Enterobacter faecium (Efm) plays a crucial role in modulating the sorafenib activity. The effective colonization by Emf induced the IL-12 and IFN-γ production and an increased proportion of IFN-γ+CD8+ T cells in the tumor microenvironment. Finally, exopolysaccharides (EPS) from Efm were the primary inducer to prompt IFN-γ+CD8+ T cells to secrete IFN-γ, which together with sorafenib instigated ferroptosis in HCC cells. Collectively, these results indicate that Efm is a promising probiotics that enhances the efficacy of sorafenib treatment in advanced HCC.
Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Enterococcus faecium , Ferroptose , Interferon gama , Neoplasias Hepáticas , Sorafenibe , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/microbiologia , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/microbiologia , Interferon gama/metabolismo , Interferon gama/imunologia , Humanos , Enterococcus faecium/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Animais , Ferroptose/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Probióticos/farmacologia , Masculino , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologiaRESUMO
BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is an aggressive and highly lethal cancer with an increasing incidence worldwide that lacks effective treatment regimens. Hypocrellin A (HA), a natural small compound isolated from S. bambusicola, has multiple biomedical activities, including antitumor activity. PURPOSE: We intended to investigate the therapeutic effects of HA on ICC and its potential mechanisms. METHODS: RBE and HuccT1 cell lines were utilized for in vitro experiments. CCK8 assay, colony formation analysis, RTCA, and immunofluorescence staining of ki67 were employed to evaluate the suppression effects of HA on proliferation. The inhibitory effects of HA on cell migration and invasion were evaluate through transwell and wound healing assays, and Hoechst 33,258 staining was performed to evaluate apoptosis. Additionally, we performed transcriptome sequencing and molecular docking for targeting identification, and immunoblotting and immunofluorescence of key molecules for validation. Two in vivo models, HuccT1 xenografts, and the primary ICC model (KRAS/P19/SB) established via hydrodynamic tail-vein injection were implemented. Multiplex immunohistochemistry (mIHC) was used to illustrate the multi-target inhibitory effects of HA. RESULTS: The IC50 values of HA against RBE and HuccT1 cells were 4.612 µM and 10.01 µM for 24 h, as determined through the CCK8 assay. Our results confirmed that HA significantly repressed the proliferation, migration, invasion, and promoted the apoptosis of ICC cells at low concentrations. Moreover, HA exerted its anti-cancer effects through multi-target inhibition of the PI3K-AKT-mTOR, MAPK, and STAT3 signaling pathways. This inhibitory effect was rescued by Recilisib, an activator of the PI3K-AKT-mTOR pathway. Bioinformatics analysis of a multi-center RNA-Seq cohort (n = 90) demonstrated significant associations between these target pathways and the occurrence and poor prognosis of ICC. Animal studies suggested that HA strongly inhibited tumor growth in xenograft ICC models, and repressed the tumor number and size in the liver of primary ICC models by suppressing these three crucial pathways. CONCLUSION: HA, a novel natural small molecule, demonstrated promising therapeutic efficacy against ICC through its multi-target inhibitory effects on the PI3K-AKT-mTOR, MAPK, and STAT3 signaling pathways. Moreover, it exhibited notable therapeutic benefits in a primary ICC model (KRAS/P19/SB), positioning it as a novel therapeutic agent for ICC.
RESUMO
Gastric cancer (GC), characterized by its inconspicuous initial symptoms and rapid invasiveness, presents a formidable challenge. Overlooking postoperative intervention opportunities may result in the dissemination of tumors to adjacent areas and distant organs, thereby substantially diminishing prospects for patient survival. Consequently, the prompt recognition and management of GC postoperative recurrence emerge as a matter of paramount urgency to mitigate the deleterious implications of the ailment. This study proposes an enhanced feature selection model, bRSPSO-FKNN, integrating boosted particle swarm optimization (RSPSO) with fuzzy k-nearest neighbor (FKNN), for predicting GC. It incorporates the Runge-Kutta search, for improved model accuracy, and Gaussian sampling, enhancing the search performance and helping to avoid locally optimal solutions. It outperforms the sophisticated variants of particle swarm optimization when evaluated in the CEC 2014 test suite. Furthermore, the bRSPSO-FKNN feature selection model was introduced for GC recurrence prediction analysis, achieving up to 82.082 % and 86.185 % accuracy and specificity, respectively. In summation, this model attains a notable level of precision, poised to ameliorate the early warning system for GC recurrence and, in turn, advance therapeutic options for afflicted patients.
Assuntos
Recidiva Local de Neoplasia , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Humanos , Algoritmos , Distribuição NormalRESUMO
Background and objective: Epithelial ovarian cancer (EOC) is associated with latent onset and poor prognosis, with drug resistance being a main concern in improving the prognosis of these patients. The resistance of cancer cells to most chemotherapeutic agents can be related to autophagy mechanisms. This study aimed to assess the therapeutic effect of MK8722, a small-molecule compound that activates AMP-activated protein kinase (AMPK), on EOC cells and to propose a novel strategy for the treatment of EOC. Purpose: To explore the therapeutic effects of MK8722 on EOC cells, and to elucidate the underlying mechanism. Methods and results: It was found that MK8722 effectively inhibited the malignant biological behaviors of EOC cells. In vitro experiments showed that MK8722 targeted and decreased the lipid metabolic pathway-related fatty acid synthase (FASN) expression levels, causing the accumulation of lipid droplets. In addition, transmission electron microscopy revealed the presence of autophagosome-affected mitochondria. Western blotting confirmed that MK8722 plays a role in activating autophagy upstream (PI3K/AKT/mTOR) and inhibiting autophagy downstream via FASN-dependent reprogramming of lipid metabolism. Plasmid transient transfection demonstrated that MK8722 suppressed late-stage autophagy by blocking autophagosome-lysosome fusion. Immunofluorescence and gene silencing revealed that this effect was achieved by inhibiting the interaction of FASN with the SNARE complexes STX17-SNP29-VAMP8. Furthermore, the antitumor effect of MK8722 was verified using a subcutaneous xenograft mouse model. Conclusion: The findings suggest that using MK8722 may be a new strategy for treating EOC, as it has the potential to be a new autophagy/mitophagy inhibitor. Its target of action, FASN, is a molecular crosstalk between lipid metabolism and autophagy, and exploration of the underlying mechanism of FASN may provide a new research direction.
Assuntos
Metabolismo dos Lipídeos , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Autofagia , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/farmacologia , Carcinoma Epitelial do Ovário , Ácido Graxo Sintase Tipo I/metabolismoRESUMO
Backgrounds and aims: Immunotherapies have formed an entirely new treatment paradigm for hepatocellular carcinoma (HCC). Tertiary lymphoid structure (TLS) has been associated with good response to immunotherapy in most solid tumors. Nonetheless, the role of TLS in human HCC remains controversial, and recent studies suggest that their functional heterogeneity may relate to different locations within the tumor. Exploring factors that influence the formation of TLS in HCC may provide more useful insights. However, factors affecting the presence of TLSs are still unclear. The human gut microbiota can regulate the host immune system and is associated with the efficacy of immunotherapy but, in HCC, whether the gut microbiota is related to the presence of TLS still lacks sufficient evidence. Methods: We performed pathological examinations of tumor and para-tumor tissue sections. Based on the location of TLS in tissues, all patients were divided into intratumoral TLS (It-TLS) group and desertic TLS (De-TLS) group. According to the grouping results, we statistically analyzed the clinical, biological, and pathological features; preoperative gut microbiota data; and postoperative pathological features of patients. Results: In a retrospective study cohort of 60 cases from a single center, differential microbiota analysis showed that compared with the De-TLS group, the abundance of Lachnoclostridium, Hungatella, Blautia, Fusobacterium, and Clostridium was increased in the It-TLS group. Among them, the enrichment of Lachnoclostridium was the most significant and was unrelated to the clinical, biological, and pathological features of the patients. It can be seen that the difference in abundance levels of microbiota is related to the presence of TLS. Conclusion: Our findings prove the enrichment of Lachnoclostridium-dominated gut microbiota is associated with the presence of It-TLS in HCC patients.
Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Estruturas Linfoides Terciárias , Humanos , Carcinoma Hepatocelular/terapia , Estudos Retrospectivos , Neoplasias Hepáticas/terapia , ClostridialesRESUMO
BACKGROUND: Even after curative resection, the prognosis for patients with intrahepatic cholangiocarcinoma (iCCA) remains disappointing due to the extremely high incidence of postoperative recurrence. METHODS: A total of 280 iCCA patients following curative hepatectomy from three independent institutions were recruited to establish the retrospective multicenter cohort study. The very early recurrence (VER) of iCCA was defined as the appearance of recurrence within 6 months. The 3D tumor region of interest (ROI) derived from contrast-enhanced CT (CECT) was used for radiomics analysis. The independent clinical predictors for VER were histological stage, AJCC stage, and CA199 levels. We implemented K-means clustering algorithm to investigate novel radiomics-based subtypes of iCCA. Six types of machine learning (ML) algorithms were performed for VER prediction, including logistic, random forest (RF), neural network, bayes, support vector machine (SVM), and eXtreme Gradient Boosting (XGBoost). Additionally, six clinical ML (CML) models and six radiomics-clinical ML (RCML) models were developed to predict VER. Predictive performance was internally validated by 10-fold cross-validation in the training cohort, and further evaluated in the external validation cohort. RESULTS: Approximately 30 % of patients with iCCA experienced VER with extremely discouraging outcome (Hazard ratio (HR) = 5.77, 95 % Confidence Interval (CI) = 3.73-8.93, P < 0.001). Two distinct iCCA subtypes based on radiomics features were identified, and subtype 2 harbored a higher proportion of VER (47.62 % Vs 25.53 %) and significant shorter survival time than subtype 1. The average AUC values of the CML and RCML models were 0.744 ± 0.018, and 0.900 ± 0.014 in the training cohort, and 0.769 ± 0.065 and 0.929 ± 0.027 in the external validation cohort, respectively. CONCLUSION: Two radiomics-based iCCA subtypes were identified, and six RCML models were developed to predict VER of iCCA, which can be used as valid tools to guide individualized management in clinical practice.