Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 370: 122662, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332300

RESUMO

Algae play critical roles in the carbon dioxide (CO2) exchange between the water bodies and the atmosphere. However, the effects of prokaryotic and eukaryotic algae on carbon utilization, CO2 flux, and the underlying mechanisms remain poorly understood. Therefore, this study investigated the differences in carbon preferences and CO2 fluxes under different algal dominance days. Our research revealed that dissolved inorganic carbon (DIC) concentration fluctuations had a limited effect on the relative abundance of algae. However, shifts in dominant algal phyla induced changes in DIC, with Cyanobacteria preferring HCO3- and Chlorophyta preferring CO2. Analysis of the water chemistry balance indicated that the growth of Chlorophyta had a 15.59 times greater effect on CO2 sinks compared with that of Cyanobacteria. During the Cyanobacteria dominance days, the lower DIC concentration did not result in a reduction in CO2 emissions. However, increases in the dissolved organic carbon concentration provided a favorable environment for Cyanobacteria, which promoted CO2 emissions. The CCM model indicated that the growth of Chlorophyta resulted in CO2 uptake rates at least 3.57 times higher and CO2 leakage rates up to 0.97 times lower compared to Cyanobacteria, accelerating CO2 transport into the cell. Overall, CO2 sink was stronger on Chlorophyta dominance days than on Cyanobacteria dominance days. This study emphasized the influence of algal phyla on CO2 fluxes, revealing the significant CO2 sink associated with Chlorophyta. Further research should investigate how to manipulate environmental factors to favor Chlorophyta growth and effectively reduce CO2 emissions.

2.
Environ Res ; 216(Pt 3): 114649, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309212

RESUMO

The nutrient supply to the freshwater system may be changed by rainfall, which also encourages the cyclic succession of microorganisms. However, in a highly dynamic land-water reservoir, the microbial metabolic changes brought on by the changes of water nutrients following rainfall are not clearly documented. The study selected the Three Gorges Reservoir (TGR) backwater region during algal bloom seasons as the study area and time, and used the Biolog-EcoPlates technique to examine the heterotrophic metabolism conditions of the water before and after rain. The field monitoring assessed how biotic and abiotic variables affected CO2 flux at the water-air interface. The tests conducted in the laboratory investigated the water-integrated metabolic process was affected by post-rainfall environmental changes. The results showed that the average flux of CO2 at the water-air interface before rainfall was -489.17 ± 506.66 mg·(m2·d)-1, while the average CO2 flux reached 393.35 ± 793.49 mg·(m2·d)-1 after rainfall. This is mostly explained by the heterotrophic metabolic variability of plankton in response to changes in the aqueous environment brought on by precipitation. These discoveries help us better understand how biological metabolisms after rain affect the CO2 flux at the water-air interface and reservoir greenhouse gas (GHG) emission equivalents can be evaluated more accurately.


Assuntos
Dióxido de Carbono , Plâncton , Dióxido de Carbono/análise , Eutrofização , Água Doce , Estações do Ano , Água , China , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA