Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
J Colloid Interface Sci ; 674: 813-822, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38955012

RESUMO

A heterojunction of trace Co3O4 bonded on oxygen vacancies (OVs)-rich ZnO (OVs-ZnO/Co3O4) was synthesized via defect-assisted method to promote peroxymonosulfate (PMS) activation and pollutants degradation. Experiments and theoretical calculations demonstrated that electrons could efficiently transfer from OVs-ZnO to Co3O4. OVs-ZnO and Co3O4 played different roles in activating PMS. PMS was easily adsorbed on the OVs-ZnO to form PMS* complex and mediated electron transfer to oxide ciprofloxacin (CIP), whereas, Co3O4 facilitated breakup of peroxide bond to produce radicals. The optimal OVs-ZnO/Co3O4 with Co content of 1.34% exhibited good PMS decomposition ability (94.2% in 30 min) compared to unmodified ZnO (24.2%), stability and anti-interference feature in removing CIP, 96.9% CIP (10 ppm) and 79.6% of total organic carbon were removed in 30 min. Moreover, the OVs-ZnO/Co3O4 achieved 91.2% CIP removal ratio with 1.0 mM PMS via a flow-through device in 180 min. This study proposes a new strategy to enhance PMS activation of ZnO and provides new viewpoint in PMS activation way.

2.
Nat Med ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992123

RESUMO

Immunochemotherapy is the first-line standard for extensive-stage small-cell lung cancer (ES-SCLC). Combining the regimen with anti-angiogenesis may improve efficacy. ETER701 was a multicenter, double-blind, randomized, placebo-controlled phase 3 trial that investigated the efficacy and safety of benmelstobart (a novel programmed death-ligand 1 (PD-L1) inhibitor) with anlotinib (a multi-target anti-angiogenic small molecule) and standard chemotherapy in treatment-naive ES-SCLC. The ETER701 trial assessed two primary endpoints: Independent Review Committee-assessed progression-free survival per RECIST 1.1 and overall survival (OS). Here the prespecified final progression-free survival and interim OS analysis is reported. Patients randomly received benmelstobart and anlotinib plus etoposide/carboplatin (EC; n = 246), placebo and anlotinib plus EC (n = 245) or double placebo plus EC ('EC alone'; n = 247), followed by matching maintenance therapy. Compared with EC alone, median OS was prolonged with benmelstobart and anlotinib plus EC (19.3 versus 11.9 months; hazard ratio 0.61; P = 0.0002), while improvement of OS was not statistically significant with anlotinib plus EC (13.3 versus 11.9 months; hazard ratio 0.86; P = 0.1723). The incidence of grade 3 or higher treatment-related adverse events was 93.1%, 94.3% and 87.0% in the benmelstobart and anlotinib plus EC, anlotinib plus EC, and EC alone groups, respectively. This study of immunochemotherapy plus multi-target anti-angiogenesis as first-line treatment achieved a median OS greater than recorded in prior randomized studies in patients with ES-SCLC. The safety profile was assessed as tolerable and manageable. Our findings suggest that the addition of anti-angiogenesis therapy to immunochemotherapy may represent an efficacious and safe approach to the management of ES-SCLC. ClinicalTrials.gov identifier: NCT04234607 .

3.
Anal Chem ; 96(28): 11472-11478, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38957093

RESUMO

It is well-known that the bacterial microenvironment imposes restrictions on the growth and behavior of bacteria. The localized monitoring of microenvironmental factors is appreciated when consulting bacterial adaptation and behavior in the presence of chemical or mechanical stimuli. Herein, we developed a novel liquid crystal (LC) biosensor in a microsphere configuration for real-time 3D monitoring of the bacteria microenvironment, which was implemented by a microfluidic chip. As a proof of concept, a LC gel (LC-Gel) microsphere biosensor was prepared and employed in the localized pH changes of bacteria by observing the configuration change of LC under polarized optical microscopy. Briefly, the microsphere biosensor was constructed in core-shell configuration, wherein the core contained LCE7 (a nematic LC) doped with 4-pentylbiphenyl-4'-carboxylic acid (PBA), and the shell encapsulated the bacteria. The protonation of carboxyl functional groups of the PBA induced a change in charge density on the surface of LCE7 and the orientation of E7 molecules, resulting in the transitions of the LC nucleus from axial to bipolar. The developed LC-Gel microspheres pH sensor exhibited its dominant performance on localized pH real-time sensing with a resolution of 0.1. An intriguing observation from the prepared pH biosensor was that the diverse bacteria impelled distinct acidifying or alkalizing effects. Overall, the facile LC-Gel microsphere biosensor not only provides a versatile tool for label-free, localized pH monitoring but also opens avenues for investigating the effects of chemical and mechanical stimuli on cellular metabolism within bacterial microenvironments.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Microesferas , Concentração de Íons de Hidrogênio , Cristais Líquidos/química , Escherichia coli
4.
Chemosphere ; 361: 142530, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851511

RESUMO

Chiroptical sensing with real-time colorimetrical detection has been emerged as quantifiable properties, enantioselective responsiveness, and optical manipulation in environmental monitoring, food safety and other trace identification fields. However, the sensitivity of chiroptical sensing materials remains an immense challenge. Here, we report a dynamically crosslinking strategy to facilitate highly sensitive chiroptical sensing material. Chiral nematic cellulose nanocrystals (CNC) were co-assembled with amino acid by a two-step esterification, of which a precisely tunable helical pitch, a unique spiral conformation with hierarchical and numerous active sites in sensing performance could be trigged by dynamic covalent bond on amines. Such a CNC/amino acid chiral optics features an ultra-trace amount of 0.08 mg/m3 and a high sensitivity of 60 nm/(mg/m3) for formaldehyde gas at a molecule level detection, which is due to the three synergistic adsorption enhancement of dynamic covalent bonded interaction, hydrogen bonded interaction and van der Waals interaction. Meanwhile, an enhancement hierarchical adsorption of CNC/amino acid chiral materials can be readily representative to the precise helical pitch and colorimetrical switch for sensitive visualization reorganization.


Assuntos
Celulose , Nanopartículas , Compostos Orgânicos Voláteis , Celulose/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Nanopartículas/química , Monitoramento Ambiental/métodos , Aminoácidos/análise , Aminoácidos/química , Colorimetria/métodos , Estereoisomerismo , Formaldeído/química , Formaldeído/análise , Adsorção
5.
Signal Transduct Target Ther ; 9(1): 148, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890298

RESUMO

Penpulimab is an anti-programmed cell death-1 (PD-1) IgG1 antibody with no Fc gamma receptor (FcγR) binding activity, and thus theoretically reduced immune-related adverse events (irAEs) while maintaining efficacy. This single-arm, phase II trial conducted across 20 tertiary care centers in China enrolled adult patients with metastatic nasopharyngeal carcinoma (NPC) who had failed two or more lines of previous systemic chemotherapy. Patients received 200-mg penpulimab intravenously every 2 weeks (4 weeks per cycle) until disease progression or intolerable toxicities. The primary endpoint was objective response rate (ORR) per RECIST (version 1.1), as assessed by an independent radiological review committee. The secondary endpoints included progression-free survival (PFS) and overall survival (OS). One hundred thirty patients were enrolled and 125 were efficacy evaluable. At the data cutoff date (September 28, 2022), 1 patient achieved complete response and 34 patients attained partial response. The ORR was 28.0% (95% CI 20.3-36.7%). The response was durable, with 66.8% still in response at 9 months. Thirty-three patients (26.4%) were still on treatment. The median PFS and OS were 3.6 months (95% CI = 1.9-7.3 months) and 22.8 months (95% CI = 17.1 months to not reached), respectively. Ten (7.6%) patients experienced grade 3 or higher irAEs. Penpulimab has promising anti-tumor activities and acceptable toxicities in heavily pretreated metastatic NPC patients, supporting further clinical development as third-line treatment of metastatic NPC.


Assuntos
Carcinoma Nasofaríngeo , Metástase Neoplásica , Receptor de Morte Celular Programada 1 , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Adulto , Idoso , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos
6.
J Colloid Interface Sci ; 673: 267-274, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38875792

RESUMO

Catalysts composed of nanocluster and single-atom (SA) were extensively used to enhance electrocatalytic water splitting performance, whereas study of their photocatalytic hydrogen (H2) evolution activity was limited. Herein, carbon nitride (CN) decorated by ruthenium (Ru) cocatalysts existed as SA + cluster, cluster + nanoparticles (NPs), and NPs were prepared by impregnation and calcination processes. The correlation between existential form, content of Ru cocatalyst and H2 evolution rate were carefully discussed. It was found that Ru NPs were favor for water molecule adsorption, whereas Ru SAs and clusters facilitated H2 desorption. Theoretical calculations revealed that Ru clusters + NPs cocatalyst were beneficial for H* intermediate formation. Water splitting tests found that 1.07 wt% Ru NPs + cluster modified CN showed the highest H2 evolution rate of 13.64 mmol h-1 g-1, which was 266.4 and 1.5 times higher than those of CN and Ru NPs (2.33 wt%) decorated CN, respectively. This work deeply reveals the influences of existential form of Ru cocatalysts on photocatalytic water splitting of CN, and provides thought in designing new cocatalysts to largely enhance H2 evolution.

7.
RSC Adv ; 14(23): 16349-16357, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38812824

RESUMO

Molecular hybridization is a widely employed technique in medicinal chemistry for drug modification, aiming to enhance pharmacological activity and minimize side effects. The combination of an indole ring and imidazole[2,1-b]thiazole has shown promising potential as a group that exhibits potent anti-inflammatory effects. In this study, we designed and synthesized a series of derivatives comprising indole-2-formamide benzimidazole[2,1-b]thiazole to evaluate their impact on LPS-induced production of pro-inflammatory cytokines NO, IL-6, and TNF-α release, as well as iron death in RAW264.7 cells. The findings revealed that most compounds effectively inhibited LPS-induced production of pro-inflammatory cytokines NO, IL-6, and TNF-α release in RAW264.7 cells. Compound 13b exhibited the most potent anti-inflammatory activity among the tested compounds. The results of the cytotoxicity assay indicated that compound 13b was nontoxic. Additionally, compound 13b was found to elevate the levels of ROS, MDA, and Fe2+, while reducing GSH content, thereby facilitating the iron death process. Consequently, compound 13b showed promise for future development as an anti-inflammatory drug.

8.
Dalton Trans ; 53(16): 7131-7141, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38568717

RESUMO

Spatially-ordered 1D nanocrystal-based semiconductor nanostructures possess distinct merits for photocatalytic reaction, including large surface area, fast carrier separation, and enhanced light scattering and absorption. Nevertheless, establishing a valid photo-carrier transmission channel is still crucial yet challenging for semiconductor heterostructures to realize efficient photocatalysis. In this work, spatially ordered NiOOH-ZnS/CdS heterostructures were constructed by sequential ZnS coating and NiOOH photo-deposition on multi-armed CdS, which consists of {112̄0}-faceted wurtzite nanorods grown epitaxially on {111}-faceted zinc blende core. Intriguingly, the surface photovoltage spectroscopy and PbO2 photo-deposition results suggest that the photogenerated holes of CdS were first transferred to the Zn-vacancy level of ZnS and then to NiOOH, as driven by the built-in electric field between ZnS and CdS and the hole-extracting effect of the NiOOH cocatalyst, leading to the efficient charge separation of NiOOH-ZnS/CdS. With visible-light (λ > 420 nm) irradiation, NiOOH-ZnS/CdS exhibited a distinguished H2-evolution rate of 152.20 mmol g-1 h-1 (apparent quantum efficiency of 40.9% at 420 nm), approximately 18 folds that of 3 wt% Pt-loaded CdS and much higher than that of ZnS/CdS and NiOOH-CdS counterparts as well as the most reported CdS-containing photocatalysts. Moreover, the cycling and long-term H2 generation tests manifested the outstanding photocatalyst stability of NiOOH-ZnS/CdS. The study results presented here may propel the controllable design of highly-active nanomaterials for solar conversion and utilization.

9.
J Colloid Interface Sci ; 667: 433-440, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640662

RESUMO

In this work, Br, K-doped and cyano group-rich carbon nitride (CN) were prepared via pyrolysis of molten urea and 6-Bromopyridine-3-carbaldehyde, followed by re-calcination with potassium thiocyanate. The hydrogen peroxide (H2O2) evolution and in situ tetracycline (TC) mineralization performances of the prepared samples were studied. The optimal sample could produce 9127 µmol g-1 h-1 H2O2 from 10 vol% ethanol solution and air atmosphere, which was 10.9 times higher than that of pristine CN. With addition of 4 mg L-1 Fe2+ ions, 97.2% of TC (10 mg L-1) and 98.7% of total organic carbon were removed in 30 min under the actions of holes, hydroxyl and superoxide radicals. The high H2O2 yield and TC mineralization ratio were attributed to the increased light absorption, efficient electrons-holes separation, enhanced surface O2 adsorption (0.3878 mmol g-1), and accelerated conversion from Fe3+ to Fe2+ ions. Meanwhile, the system possessed good reusability in H2O2 evolution and TC removal. It is expected that this work can provide new ideas to design CN-based photo-Fenton system to treat wastewater.

10.
Commun Biol ; 7(1): 505, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678117

RESUMO

Alpha-fetoprotein (AFP), a serum glycoprotein, is expressed during embryonic development and the pathogenesis of liver cancer. It serves as a clinical tumor marker, function as a carcinogen, immune suppressor, and transport vehicle; but the detailed AFP structural information has not yet been reported. In this study, we used single-particle cryo-electron microscopy(cryo-EM) to analyze the structure of the recombinant AFP obtained a 3.31 Å cryo-EM structure and built an atomic model of AFP. We observed and identified certain structural features of AFP, including N-glycosylation at Asn251, four natural fatty acids bound to distinct domains, and the coordination of metal ions by residues His22, His264, His268, and Asp280. Furthermore, we compared the structural similarities and differences between AFP and human serum albumin. The elucidation of AFP's structural characteristics not only contributes to a deeper understanding of its functional mechanisms, but also provides a structural basis for developing AFP-based drug vehicles.


Assuntos
Ácidos Graxos , Modelos Moleculares , alfa-Fetoproteínas , Humanos , alfa-Fetoproteínas/metabolismo , alfa-Fetoproteínas/química , Sítios de Ligação , Microscopia Crioeletrônica , Ácidos Graxos/metabolismo , Glicosilação , Metais/metabolismo , Metais/química , Conformação Proteica , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química
11.
Talanta ; 272: 125819, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417372

RESUMO

Live food-borne pathogens, featured with rapid proliferative capacity and high pathogenicity, pose an emerging food safety and public health crisis. The high-sensitivity detection of pathogens is particularly imperative yet remains challenging. This work developed a functionalized nylon swab array with enhanced affinity for Salmonella typhimurium (S.T.) for high-specificity ATP bioluminescence-based S.T. detection. In brief, the nylon swabs (NyS) were turned to N-methylation nylon (NyS-OH) by reacting with formaldehyde, and NyS-OH were further converted to NyS-CA by reacting with carboxylic groups of citric acid (CA) and EDC/NHS solution, for altering the NyS surface energy to favor biomodification. The antibody-immobilized nylon swab (MNyS-Ab) was ready for S.T.-specific adsorption. Three prepared MNyS-Ab were installed on a stirrer to form an MNyS-Ab array, allowing for on-site enrichment of S.T. through absorptive extraction. The enriched S.T. was quantified by measuring the bioluminescence of ATP released from cell lysis utilizing a portable ATP bioluminescence sensor. The bioassay demonstrated a detectable range of 102-107 CFU mL-1 with a detection limit (LOD) of 8 CFU/mL within 35 min. The signal of single MNyS-Ab swabs was 500 times stronger than the direct detection of 106 CFU/mL S.T. The MNyS-Ab array exhibited a 100-fold increase in extraction level compared to a single MNyS. This combination of a portable bioluminescent sensor and modified nylon swab array offers a novel strategy for point-of-care testing of live S.T. strains. It holds promise for high-sensitivity measurements of other pathogens and viruses.


Assuntos
Nylons , Salmonella typhimurium , Anticorpos , Manejo de Espécimes , Trifosfato de Adenosina
12.
Int J Surg ; 110(4): 2275-2287, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265431

RESUMO

BACKGROUND: Neoadjuvant chemoimmunotherapy (NACI) is promising for resectable nonsmall cell lung cancer (NSCLC), but predictive biomarkers are still lacking. The authors aimed to develop a model based on pretreatment parameters to predict major pathological response (MPR) for such an approach. METHODS: The authors enrolled operable NSCLC treated with NACI between March 2020 and May 2023 and then collected baseline clinical-pathology data and routine laboratory examinations before treatment. The efficacy and safety data of this cohort was reported and variables were screened by Logistic and Lasso regression and nomogram was developed. In addition, receiver operating characteristic curves, calibration curves, and decision curve analysis were used to assess its power. Finally, internal cross-validation and external validation was performed to assess the power of the model. RESULTS: In total, 206 eligible patients were recruited in this study and 53.4% (110/206) patients achieved MPR. Using multivariate analysis, the predictive model was constructed by seven variables, prothrombin time (PT), neutrophil percentage (NEUT%), large platelet ratio (P-LCR), eosinophil percentage (EOS%), smoking, pathological type, and programmed death ligand-1 (PD-L1) expression finally. The model had good discrimination, with area under the receiver operating characteristic curve (AUC) of 0.775, 0.746, and 0.835 for all datasets, cross-validation, and external validation, respectively. The calibration curves showed good consistency, and decision curve analysis indicated its potential value in clinical practice. CONCLUSION: This real world study revealed favorable efficacy in operable NSCLC treated with NACI. The proposed model based on multiple clinically accessible parameters could effectively predict MPR probability and could be a powerful tool in personalized medication.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia Neoadjuvante , Nomogramas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Feminino , Masculino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Pessoa de Meia-Idade , Terapia Neoadjuvante/métodos , Idoso , Imunoterapia/métodos , Estudos Retrospectivos , Resultado do Tratamento , Curva ROC
13.
Hepatol Int ; 18(1): 4-31, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864725

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignancies and the third leading cause of cancer-related deaths globally. Hepatic arterial infusion chemotherapy (HAIC) treatment is widely accepted as one of the alternative therapeutic modalities for HCC owing to its local control effect and low systemic toxicity. Nevertheless, although accumulating high-quality evidence has displayed the superior survival advantages of HAIC of oxaliplatin, fluorouracil, and leucovorin (HAIC-FOLFOX) compared with standard first-line treatment in different scenarios, the lack of standardization for HAIC procedure and remained controversy limited the proper and safe performance of HAIC treatment in HCC. Therefore, an expert consensus conference was held on March 2023 in Guangzhou, China to review current practices regarding HAIC treatment in patients with HCC and develop widely accepted statements and recommendations. In this article, the latest evidence of HAIC was systematically summarized and the final 22 expert recommendations were proposed, which incorporate the assessment of candidates for HAIC treatment, procedural technique details, therapeutic outcomes, the HAIC-related complications and corresponding treatments, and therapeutic scheme management.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Resultado do Tratamento , Artéria Hepática/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fluoruracila/uso terapêutico , Infusões Intra-Arteriais
14.
Small ; : e2308613, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072783

RESUMO

Due to the shortage of pure water resources, seawater electrolysis is a promising strategy to produce green hydrogen energy. To avoid chlorine oxidation reactions (ClOR) and the production of more corrosive hypochlorite, enhancing OER electrocatalyst activity is the key to solving the above problem. Considering that transition metal phosphides (TMPs) are promising OER eletrocatalysts for seawater splitting, a method to regulate the electronic structure of FeP by introducing Mn heteroatoms and phosphorus vacancy on it (Mn-FePV ) is developed. As an OER electrocatalyst in seawater solution, the synthesized Mn-FePV achieves extremely low overpotentials (η500  = 376, η1000  = 395 mV). In addition, the Pt/C||Mn-FePV couple only requires the voltage of 1.81 V to drive the current density of 1000 mA cm-2 for overall seawater splitting. The density functional theory (DFT) calculation shows that Mn-FePV (0.21 e- ) has more charge transfer number compared with FeP (0.17 e- ). In-situ Raman analysis shows that phosphorus vacancy and Mn doping can synergistically regulate the electronic structure of FeP to induce rapid phase reconstruction, further improving the OER performance of Mn-FePV . The new phase species of FeOOH is confirmed to can enhance the adsorption kinetics of OER intermediates.

15.
Anal Chem ; 95(46): 17064-17072, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37943962

RESUMO

Plyfluoroalkyl substance (PFAS), featured with incredible persistence and chronic toxicity, poses an emerging ecological and environmental crisis. Although significant progress has been made in PFAS metabolism in vivo, the underlying mechanism of metabolically active organ interactions in PFAS bioaccumulation remains largely unknown. We developed a microfluidic-based assay to recreate the intestine-vessel-liver interface in three dimensions, allowing for high-resolution, real-time images and precise quantification of intestine-vessel-liver interactions in PFAS biotransformation. In contrast to the scattered arrangement of vascular endothelium on the traditional d-polylysine-modified two-dimensional (2D) plate, the microtubules in our three-dimensional (3D) platform formed a dense honeycomb network through the ECM, with longer tubular structures. Additionally, the slope culture of epithelial cells in our platform exhibited a closely arranged and thicker cell layer than the planar culture. To dynamically monitor the metabolic crosstalk in the intestinal-vascular endothelium-liver interaction under exposure to fluorotelomer alcohols (FTOHs), we combined the chip with a solid-phase extraction-mass spectrometry (SPE-MS) system. Our findings revealed that endothelial cells were involved in the metabolic process of FTOHs. The transformation of intestinal epithelial and hepatic epithelial cells produces toxic metabolite fluorotelomer carboxylic acids (FTCAs), which circulate to endothelial cells and affect angiogenesis. This system shows promise as an enhanced surrogate model and platform for studying pollutant exposure as well as for biomedical and pharmaceutical research.


Assuntos
Células Endoteliais , Fluorocarbonos , Células Endoteliais/metabolismo , Microfluídica , Fluorocarbonos/análise , Biotransformação , Fígado/metabolismo
16.
Anal Chem ; 95(35): 13391-13399, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37610722

RESUMO

Early detection of foodborne bacteria is urgently needed to ensure food quality and to avoid the outbreak of foodborne bacterial diseases. Here, a kind of metal-organic framework (Zr-MOF) modified with Pt nanoparticles (Pt-PCN-224) was designed as a peroxidase-like signal amplifier for microfluidic biosensing of foodborne bacteria. Taking Escherichia coli (E. coli) O157:H7 as a model, a linear range from 2.93 × 102 to 2.93 × 108 CFU/mL and a limit of detection of 2 CFU/mL were obtained. The whole detection procedure was integrated into a single microfluidic chip. Water, milk, and cabbage samples were successfully detected, showing consistency with the results of the standard culture method. Recoveries were in the range from 90 to 110% in spiked testing. The proposed microfluidic biosensor realized the specific and sensitive detection of E. coli O157:H7 within 1 h, implying broad prospects of MOF with biomimetic enzyme activities for biosensing.


Assuntos
Escherichia coli O157 , Doenças Transmitidas por Alimentos , Humanos , Microfluídica , Bactérias , Amplificadores Eletrônicos , Biomimética
17.
Anal Chem ; 95(35): 13368-13375, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37610723

RESUMO

A multifunctional platform that meets the demands of both bacterial detection and elimination is urgently needed because of their harm to human health. Herein, a "sense-and-treat" biosensor was developed by using immunomagnetic beads (IMBs) and AgPt nanoparticle-decorated PCN-223-Fe (AgPt/PCN-223-Fe, PCN stands for porous coordination network) metal-organic frameworks (MOFs). The synthesized AgPt/PCN-223-Fe not only exhibited excellent peroxidase-like activity but also could efficiently kill bacteria under near infrared (NIR) irradiation. This biosensor enabled the colorimetric detection of E. coli O157:H7 in the range of 103-108 CFU/mL with a limit of detection of 276 CFU/mL, accompanied with high selectivity, good reproducibility, and wide applicability in diverse real samples. Furthermore, the biosensor possessed a highly effective antibacterial rate of 99.94% against E. coli O157:H7 under 808 nm light irradiation for 20 min. This strategy can provide a reference for the design of novel versatile biosensors for bacterial discrimination and antibacterial applications.


Assuntos
Escherichia coli O157 , Estruturas Metalorgânicas , Humanos , Reprodutibilidade dos Testes , Bactérias , Antibacterianos
18.
Explor Target Antitumor Ther ; 4(3): 519-536, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455832

RESUMO

Hepatocellular carcinoma (HCC) is a complex process that plays an important role in its progression. Abnormal glucose metabolism in HCC cells can meet the nutrients required for the occurrence and development of liver cancer, better adapt to changes in the surrounding microenvironment, and escape the attack of the immune system on the tumor. There is a close relationship between reprogramming of glucose metabolism and immune escape. This article reviews the current status and progress of glucose metabolism reprogramming in promoting immune escape in liver cancer, aiming to provide new strategies for clinical immunotherapy of liver cancer.

19.
Biol Lett ; 19(7): 20230078, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463654

RESUMO

Straight-tusked elephants (genus: Palaeoloxodon) including their island dwarf forms are extinct enigmatic members of the Pleistocene megafauna and the most common Pleistocene elephants after the mammoths. Their taxonomic placement has been revised several times. Using palaeogenomic evidence, previous studies suggested that the European P. antiquus has a hybrid origin, but no molecular data have been retrieved from their Asian counterparts, leaving a gap in our knowledge of the global phylogeography and population dynamics of Palaeoloxodon. Here, we captured a high-quality complete mitogenome from a Pleistocene Elephantidae molar (CADG841) from Northern China, which was previously morphologically assigned to the genus Elephas (Asian elephant), and partial mitochondrial sequences (838 bp) of another Palaeoloxodon sp. specimen (CADG1074) from Northeastern China. We found that both Chinese specimens cluster with a 244 000-year-old P. antiquus (specimen name: WE) from Western Europe, suggesting that this clade may represent a population with a large spatial span across Eurasia. Based on the fossil record and the molecular dating of both the divergences of different Palaeoloxodon mitochondrial clades and previously determined hybridization events, we propose that this Eurasian-wide WE clade provides evidence for an earlier migration and/or another hybridization event that happened in the evolutionary history of straight-tusked elephants.


Assuntos
Elefantes , Animais , Evolução Biológica , DNA Mitocondrial/genética , Elefantes/genética , Fósseis , Filogenia , Filogeografia
20.
J Colloid Interface Sci ; 650(Pt B): 1671-1678, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37499623

RESUMO

In this study, nickel hydroxide (Ni(OH)2) was employed to modify potassium (K)-doped graphitic carbon nitride (g-C3N4, CN) for enhancing photocatalytic CO2 reduction. The light absorption and charge separation performances of CN were enhanced after modification. Experiments and theoretical calculations indicated that the loaded Ni(OH)2 could gather electrons, facilitate adsorption and activation of CO2. The optimized photocatalyst exhibited high CO2 reductive rate with CO and CH4 yields of 42.6 and 3.5 µmol g-1, respectively after 3 h irradiation in the presence of 0.5 mL water, which was 1.4 and 4.6 times higher than the yields on K-doped CN and Ni(OH)2-decorated CN, respectively. This work provides new thought for enhancing CO2 reductive performance of CN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA