Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35208813

RESUMO

Carocin S2 is a bacteriocin with a low molecular weight generated by Pectobacterium carotovorum subsp. carotovorum 3F3 strain. The caroS2K gene, which is found in the genomic DNA alongside the caroS2I gene, which codes for an immunity protein, encodes this bacteriocin. We explored the residues responsible for Carocin S2's cytotoxic or RNA-se activity using a structure-based mutagenesis approach. The minimal antibiotic functional region starts at Lys691 and ends at Arg783, according to mutational research. Two residues in the identified region, Phe760 and Ser762, however, are unable to demonstrate this activity, suggesting that these sites may interact with another domain. Small modifications in the secondary structure of mutant caroS2K were revealed by circular dichroism (CD) spectroscopy and intrinsic tryptophan fluorescence (ITF), showing ribosomal RNA cleavage in the active site. A co-immunoprecipitation test indicated that the immunity protein CaroS2I binds to CaroS2K's C-terminus, while a region under the uncharacterized Domain III inhibits association of N-terminally truncated CaroS2K from interacting with CaroS2I. Carocin S2, a ribosomal ribonuclease bacteriocin, is the first to be identified with a domain III that encodes the cytotoxic residues as well as the binding sites between its immunity and killer proteins.

2.
Macromol Rapid Commun ; 43(5): e2100736, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34837422

RESUMO

Nano- and microscale morphology endows surfaces that play conspicuous roles in natural or artificial objects with unique functions. Surfaces with dynamic regulating features capable of switching the structures, patterns, and even dimensions of their surface profiles can control friction and wettability, thus having potential applications in antibacterial, haptics, and fluid dynamics. Here, a freestanding film with light-switchable surface based on cholesteric liquid crystal networks is presented to translate 2D flat plane into a 3D nanometer-scale topography. The wettability of the interface can be controlled by hiding or revealing the geometrical features of the surfaces with light. This reversible dynamic actuation is obtained through the order parameter change of the periodic cholesteric organization under a photoalignment procedure and lithography-free mode. Complex tailored structures can be used to encrypt tactile information and improve wettability by predesigning the orientation distribution of liquid crystal director. This rapid switching nanoprecision smart surface provides a novel platform for artificial skin, optics, and functional coatings.


Assuntos
Cristais Líquidos , Cristais Líquidos/química , Molhabilidade
3.
ACS Appl Mater Interfaces ; 13(46): 55550-55558, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34761914

RESUMO

Dynamic control of motion at the molecular level is a core issue in promoting the bottom-up programmable modulation of sophisticated self-organized superstructures. Self-assembled artificial nanoarchitectures through subtle noncovalent interactions are indispensable for diverse applications. Here, the active solar renewable energy is used to harness cholesteric liquid crystal (CLC) superstructure devices via delicate control of the dynamic equilibrium between the concentrations of molecular motor molecules with opposite handedness. Thus, the spectral position and handedness of a photonic superstructure can be tuned continuously, bidirectionally, and reversibly within the entire working spectrum (from near-ultraviolet to the thermal infrared region, over 2 µm). With these unique horizons, three advanced photoresponsive chiroptical devices, namely, a mirrorless laser, an optical vortex generator, and an encrypted contactless photorewritable board, are successfully demonstrated. The sunlight-fueled chirality inversion prompts facile switching of functionalities, such as free-space optical communication, stereoscopic display technology, and spin-to-orbital angular momentum conversion. Motor-based chiroptic devices with dynamic and versatility controllability, fast response, ecofriendly characteristics, stability, and high efficiency have potential to replace the traditional elements with static functions. The inexhaustible natural power provides a promising means for outdoor-use optics and nanophotonics.

4.
ACS Appl Mater Interfaces ; 13(37): 44916-44924, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34514781

RESUMO

Self-organized periodic micro/nanostructures caused by stimulus-responsive structural deformation often occur in anisotropic self-assembled supramolecular systems (e.g., liquid crystal systems). However, the long-range orderliness of these structures is often beyond control. In this article, we first demonstrate that a large-area disordered two-dimensional (2D) microgrid chiral structure appears in the cholesteric liquid crystal (CLC) reactive mixture because of the photopolymerization-induced Helfrich deformation effect under exposure to the single UV-laser beam. The result is attributed to the impact of an internal longitudinal strain, which is caused by the pitch contraction of the CLC-monomer region through the continuing compression of the thickening CLC polymer layer adhered on the illuminated substrate of the sample during photopolymerization. The experimental results further show that a one-dimensional (1D) UV-laser interference field can be used to effectively control the postformed 2D microgrid structure to arrange in an orderly manner throughout the large exposed area (an order of centimeter). The optimum ability for controlling the orderliness of the microgrid structure can be achieved if the spacing width of the interference field approximates the periodicity of the postformed 2D microgrids. Several factors, such as the pitch of the CLC mixture and the included angle and intensity of the two interfering laser beams, which influence the orderliness and properties of the 2D microgrid structure, are explored in this study. The result of this research opens a new page to improve the applicability of the Helfrich deformation phenomenon and further provides a reference platform for manipulating, modifying, and even tailoring periodic micro/nanostructures in self-organized supramolecular soft-matter systems for application in advanced optics/photonics.

5.
Polymers (Basel) ; 13(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669140

RESUMO

In this paper, we propose a modified gravity method by introducing centrifugal force to promote the stacking of silica particles and the order of formed colloidal crystals. In this method, a monodispersed silica colloidal solution is filled into empty cells and placed onto rotation arms that are designed to apply an external centrifugal force to the filled silica solution. When sample fabrication is in progress, silica particles are forced toward the edges of the cells. The number of defects in the colloidal crystal decreases and the structural order increases during this process. The highest reflectivity and structural order of a sample was obtained when the external centrifugal force was 18 G. Compared to the samples prepared using the conventional stacking method, samples fabricated with centrifugal force possess higher reflectivity and structural order. The reflectivity increases from 68% to 90%, with an increase in centrifugal force from 0 to 18 G.

6.
ACS Appl Mater Interfaces ; 13(2): 2483-2495, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33404219

RESUMO

Influenza, pneumonia, and pathogenic infection of the respiratory system are boosted in cold environments. Low temperatures also result in vasoconstriction, restraint of blood flow, and decreased oxygen to the heart, and the risk of a heart attack would increase accordingly. The present face mask fabric fails to preserve its air-filtering function as its electrostatic function vanishes once exposed to water. Therefore, its filtering efficacy would be decreased meaningfully, making it nearly impracticable to reuse the disposable face masks. The urgent requirement for photothermal fabrics is also rising. Nanobased polyethyleneimine-polypyrrole nanopigments (NPP NPs) have been developed and have strong near-infrared spectrum absorption and exceptional photothermal convertible performance. Herein, the mask fabric used PE-fiber-constructed membrane (PEFM) was coated by the binding affinity of the cationic polyethyleneimine component of NPP NPs forming NPP NPs-PEFM. To the best of our knowledge, no study has investigated NPP NP-coated mask fabric to perform infrared red (solar or body) photothermal conversion efficacy to provide biocompatible warming, remotely photothermally captured antipathogen, and antivasoconstriction in vivo. This pioneering study showed that the developed NPP NPs-PEFM could be washable, reusable, breathable, biocompatible, and photothermal conversable for active eradication of pathogenic bacteria. Further, it possesses warming preservation and antivasoconstriction.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanoestruturas/química , Polietileno/química , Polietilenoimina/química , Polímeros/química , Pirróis/química , Têxteis/análise , Animais , Antibacterianos/química , Raios Infravermelhos , Máscaras/microbiologia , Nanoestruturas/ultraestrutura , Processos Fotoquímicos , Coelhos , Ratos , Temperatura , Têxteis/microbiologia
7.
Eur J Sport Sci ; 21(2): 204-212, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32050853

RESUMO

AbstractThis study investigated the effects of whole body vibration (WBV) training combined with blood flow restriction (BFR) on muscle fitness. Twenty physically inactive adults were randomly assigned to a WBV + BFR group (8 men and 2 women) and a WBV group (8 men and 2 women). The participants in the WBV group were subjected to 10 sets of intermittent WBV exercise 20 min/day, 3 days/week, for 8 weeks. The participants in the WBV + BFR group received the same WBV treatment, but the proximal portion of their thighs was compressed using inflatable cuffs. Dual-energy X-ray absorptiometry estimated thigh muscle mass, one repetition maximal (1RM) leg press, and muscle endurance were measured before and after the training programme. The results indicated that thigh muscle mass significantly increased (3%) after the 8-week training period only in the WBV + BFR group. Meanwhile, 1RM leg press and muscle endurance significantly increased in both groups after training (p < 0.05). Analysis of covariance revealed that the increase in 1RM leg press and muscle endurance was significantly higher (p < 0.05) in the WBV + BFR group than the WBV group (leg press: 11.1%. vs. 4.37%; muscle endurance: 48.84% vs. 15.19%, respectively). In conclusion, exposure to regular WBV + BFR training can increase thigh muscle mass, maximal strength, and muscle endurance compared with exposure to WBV training alone. WBV + BFR training appears to be a feasible strategy for improving muscle mass, strength, and endurance in previously untrained participants.


Assuntos
Exercício Físico/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Vibração , Adaptação Fisiológica , Adulto , Terapia Combinada , Constrição , Feminino , Humanos , Masculino , Coxa da Perna/irrigação sanguínea , Coxa da Perna/fisiologia , Torniquetes
8.
Polymers (Basel) ; 12(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322782

RESUMO

This paper presents a focusing efficiency and focal length tunable planar Fresnel lens in reflection type based on azo-dye-doped cholesterol liquid crystal film. The Fresnel-like pattern of a pumping beam can be formed by a Sagnac interferometer. When the azo-dye molecules are irradiated by the pumping beam, the photoalignment effect will be induced in the bright (odd) zones due to the trans-cis photoisomerization of azo-dye molecules. Thus, the structures of cholesteric liquid crystals in the odd zones will reorient from the imperfectly planar textures to the perfectly planar textures. The different structures of cholesteric liquid crystals in two adjacent zones will give rise to phase difference for the reflected light and thus function as a Fresnel lens. The focusing efficiency of the proposed Fresnel lens can be controlled by the applied voltages and affected by the polarization state of incident light. Moreover, various focal lengths of the Fresnel lens can be achieved by rewriting a different center radius of the Fresnel-like pattern.

9.
Polymers (Basel) ; 12(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036425

RESUMO

The highly sensitive interfacial effects between liquid crystal (LC) and alignment layers make LC-bioinspired sensors an important technology. However, LC-bioinspired sensors are limited by quantification requiring a polarized microscope and expensive equipment, which makes it difficult to commercialize LC-bioinspired sensors. In this report, we first demonstrate that dye-doped LC (DDLC) chips coated with vertically aligned layers can be employed as a new LC-bioinspired sensing technology. The DDLC-bioinspired sensor was tested by detecting bovine serum albumin (BSA) and immunocomplexes of BSA pairs. The intensities of the dye color of the DDLC-bioinspired sensor can be changed with the concentrations of biomolecules and immunocomplexes. A detection limit of 0.5 µg/mL was shown for the color-indicating DDLC-bioinspired sensors. We also designed a new method to use the quantitative DDLC-bioinspired sensor with a smart-phone for potential of home test. The novel DDLC-bioinspired sensor is cheap, label-free, and easy to use, furthering the technology for home and field-based disease-related detection.

10.
Nanomaterials (Basel) ; 10(2)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050418

RESUMO

A system comprising a gold nanoisland film (Au NIF) covered with a liquid crystal (LC) material is introduced. By applying a voltage across the LC bulk, we demonstrate that changes in the refractive-index and orientation significantly modified the hybrid plasmonic-photonic resonances of the Au NIF. The hybrid structure enabled active control of the spectrum of the resonance wavelength of the metallic nanoisland by means of an externally applied electric field. Our modeling supports the observed results in LC/Au NIF. In a combination of the nanostructured surface with birefringent LCs, nonpolarized wavelength tunability of ~15 nm and absorbance tunability of ~0.024 were achieved in the visible wavelength, opening the door to optical devices and nanoscale sensors.

11.
Polymers (Basel) ; 12(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050563

RESUMO

We developed a new format for liquid crystal (LC)-based multi-microfluidic immunoassays, hosted on a polydimethylsiloxane substrate. In this design, the orientations of the LCs were strongly affected by the interface between the four microchannel walls and surrounding LCs. When the alignment layer was coated inside a microchannel, the LCs oriented homeotropically and appeared dark under crossed polarizers. After antigens bound to the immobilized antibodies on the alignment layer were coated onto the channel walls, the light intensity of the LC molecules changed from dark to bright because of disruption of the LCs. By employing pressure-driven flow, binding of the antigen/antibody could be detected by optical signals in a sequential order. The multi-microfluidic LC biosensor was tested by detecting bovine serum albumin (BSA) and an immunocomplex of BSA antigen/antibody pairs, a protein standard commonly used in labs. We show that this multi-microfluidic immunoassay was able to detect BSA and antigen/antibody BSA pairs with a naked-eye detection limitation of -0.01 µg/mL. Based on this new immunoassay design, a simple and robust device for LC-based label-free microfluidic immunodetection was demonstrated.

12.
Biomed Opt Express ; 10(9): 4636-4642, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31565514

RESUMO

Biosensors based on liquid crystal (LC) materials can be made by employing the sensitive interfacial effect between LC molecules and alignment layers on substrates. In the past, the optical texture observation method was used in the LC biosensor field. However, the method is limited by a complicated fabrication process and quantitative reproducibility of results that bv evidence that both the reliability and accuracy of LC biosensors need to be improved. In this report, we demonstrate that cholesteric LC (CLC) cells in which one substrate is coated with a vertically aligned layer can be used as a new sensing technology. The chirality of the single vertically anchored (SVA)/CLC biosensor was tested by detecting bovine serum albumin (BSA), a protein standard commonly used in the lab. The colors and corresponding spectrum of the SVA/CLC biosensor changed with the BSA concentrations. A detection limit of 1 ng/ml was observed for the SVA/CLC biosensor. The linear optical properties of the SVA/CLC biosensor produced cheap, inexpensive, and color-indicating detection of biomolecules, and may promote the technology of point-of-care devices for disease-related biomarker detection.

13.
Sci Rep ; 9(1): 7016, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064999

RESUMO

In this paper, we demonstrate a flexoelectro-optic liquid crystal phase-only device that uses a chiral nematic reflector to achieve full 2π phase modulation. This configuration is found to be very tolerant to imperfections in the chiral nematic reflector provided that the flexoelectro-optic LC layer fulfils the half-wave condition. Encouragingly, the modulation in the phase, which operates at kHz frame rates, is also accompanied by low amplitude modulation. The configuration demonstrated herein is particularly promising for the development of next-generation liquid crystal on silicon spatial light modulators.

14.
ACS Omega ; 3(11): 15435-15441, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30533577

RESUMO

We show that micron-scale two-dimensional (2D) honeycomb microwells can significantly improve the stability of blue phase liquid crystals (BPLCs). Polymeric microwells made by direct laser writing improve various features of the blue phase (BP) including a dramatic extension of stable temperature range and a large increase both in reflectivity and thermal stability of the reflective peak wavelength. These results are mainly attributed to the omnidirectional anchoring of the isotropically oriented BP molecules at the polymer walls of the hexagonal microwells and at the top and bottom substrates. This leads to an omnidirectional stabilization of the entire BPLC system. This study not only provides a novel insight into the mechanism for the BP formation in the 2D microwell but also points to an improved route to stabilize BP using 2D microwell arrays.

15.
ACS Appl Mater Interfaces ; 10(39): 33307-33315, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30198255

RESUMO

This study applies a low-cost solvothermal method to synthesize all-inorganic (lead-free cesium tin halide) perovskite quantum dots (AIPQDs) and to fabricate AIPQD-doped lasers with cholesteric liquid crystal (CLC) lasing cavities. The lasers present highly qualified lasing features of low threshold (150 nJ/pulse) and narrow line width (0.20 nm) that are attributed to the conjunction of the suppression of photoluminescence (PL) loss caused by the quantum confinement of AIPQDs and the amplification of PL caused by the band-edge effect of the CLC-distributed feedback resonator. In addition, the lasers possess highly flexible lasing-wavelength tuning features and a long-term stability under storage at room temperature and under high humidity given the protective role of CLC. These advantages are difficult to confer to typical light-emitting perovskite devices. Given these merits, the AIPQD-doped CLC laser device has considerable potential applications in optoelectronic and photonic devices, including lighting, displays, and lasers.

16.
Sci Rep ; 6: 30407, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27456475

RESUMO

This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately -0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically).

17.
Opt Express ; 24(3): 3112-26, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906876

RESUMO

This study systematically investigates the morphological appearance of azo-chiral dye-doped cholesteric liquid crystal (DDCLC)/polymer coaxial microfibers obtained through the coaxial electrospinning technique and examines, for the first time, their photocontrollable reflection characteristics. Experimental results show that the quasi-continuous electrospun microfibers can be successfully fabricated at a high polymer concentration of 17.5 wt% and an optimum ratio of 2 for the feeding rates of sheath to core materials at 25 °C and a high humidity of 50% ± 2% in the spinning chamber. Furthermore, the optical controllability of the reflective features for the electrospun fibers is studied in detail by changing the concentration of the azo-chiral dopant in the core material, the UV irradiation intensity, and the core diameter of the fibers. Relevant mechanisms are addressed to explain the optical-control behaviors of the DDCLC coaxial fibers. Considering the results, optically controllable DDCLC coaxial microfibers present potential applications in UV microsensors and wearable smart textiles or swabs.


Assuntos
Luz , Óptica e Fotônica/métodos , Polímeros/química , Cor , Corantes/química , Cristais Líquidos/química , Soluções , Temperatura , Raios Ultravioleta
18.
Opt Express ; 23(20): 26565-75, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480169

RESUMO

We present the simulation, fabrication, and optical characterization of low-index polymeric rod-connected diamond (RCD) structures. Such complex three-dimensional photonic crystal structures are created via direct laser writing by two-photon polymerization. To our knowledge, this is the first measurement at near-infrared wavelengths, showing partial photonic bandgaps for this structure. We characterize structures in transmission and reflection using angular resolved Fourier image spectroscopy to visualize the band structure. Comparison of the numerical simulations of such structures with the experimentally measured data show good agreement for both P- and S-polarizations.

19.
Opt Express ; 23(8): 10168-80, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969059

RESUMO

This work investigates the performance evolution of color cone lasing emissions (CCLEs) based on dye-doped cholesteric liquid crystal (DDCLC) cells at different fabrication conditions. Experimental results show that the energy threshold (E(th)) and relative slope efficiency (η(s)) of the lasing signal emitted at each cone angle (0°-35°) in the CCLE decreases and increases, respectively, when the waiting time in a homogenously rubbed aligned DDCLC cell is increased from 0 hr to 216 hr (9 days). This result occurs because defect lines gradually shrink with the anchoring of the surface alignment when the waiting time is increased. Hence, the scattering loss decreases, and the dwelling time of the fluorescence photons in the resonator increases, which in turn enhances the CCLE performance. With the aligned cell given the pretreatment of a rapid annealing processing (RAP), the waiting time for obtaining an optimum CCLE can markedly be reduced sixfold. The surface alignment of the DDCLC cell also plays a necessary role in generating the CCLE. This work provides an insight into the temporal evolution of the performance for the CCLE laser and offers a method (RAP) of significantly speeding up the formation of a CCLE laser with optimum performance.

20.
Opt Lett ; 39(12): 3516-9, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978525

RESUMO

In this Letter, we propose defect-mode lasing from a one-dimensional asymmetric photonic structure with dye-doped nematic liquid crystal as a central defect layer. The local field intensity of the distinguished single defect mode at the overlapped photonic band edges is drastically enhanced by the asymmetric structure consisting of two distinct multilayer photonic crystals. With high density of states of photons, effective output lasing emission and maximum input excitation are ensured. As a result, the single-mode lasing with a low excitation threshold of 0.2 µJ/pulse is achieved due to the combination of the defect layer and the photonic band edge effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA