Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171234

RESUMO

The Oak Ridge National Laboratory is planning to build the Second Target Station (STS) at the Spallation Neutron Source (SNS). STS will host a suite of novel instruments that complement the First Target Station's beamline capabilities by offering an increased flux for cold neutrons and a broader wavelength bandwidth. A novel neutron imaging beamline, named the Complex, Unique, and Powerful Imaging Instrument for Dynamics (CUPI2D), is among the first eight instruments that will be commissioned at STS as part of the construction project. CUPI2D is designed for a broad range of neutron imaging scientific applications, such as energy storage and conversion (batteries and fuel cells), materials science and engineering (additive manufacturing, superalloys, and archaeometry), nuclear materials (novel cladding materials, nuclear fuel, and moderators), cementitious materials, biology/medical/dental applications (regenerative medicine and cancer), and life sciences (plant-soil interactions and nutrient dynamics). The innovation of this instrument lies in the utilization of a high flux of wavelength-separated cold neutrons to perform real time in situ neutron grating interferometry and Bragg edge imaging-with a wavelength resolution of δλ/λ ≈ 0.3%-simultaneously when required, across a broad range of length and time scales. This manuscript briefly describes the science enabled at CUPI2D based on its unique capabilities. The preliminary beamline performance, a design concept, and future development requirements are also presented.

2.
Rev Sci Instrum ; 93(7): 073901, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922293

RESUMO

PIONEER is a high Q-resolution, single-crystal, polarized neutron diffractometer at the Second Target Station (STS), Oak Ridge National Laboratory. It will provide the unprecedented capability of measuring tiny crystals (0.001 mm3, i.e., x-ray diffraction size), ultra-thin films (10 nm thickness), and weak structural and magnetic transitions. PIONEER benefits from the increased peak brightness of STS cold-neutron sources and uses advanced Montel mirrors that are able to deliver a focused beam with a high brilliance transfer, a homogeneous profile, and a low background. Monte Carlo simulations suggest that the optimized instrument has a high theoretical peak brilliance of 2.9 × 1012 n cm-2 sr-1 Å-1 s-1 at 2.5 Å at the sample position, within a 5 × 5 mm2 region and a ±0.3° divergence range. The moderator-to-sample distance is 60 m, providing a nominal wavelength band of 4.3 Å with a wavelength resolution better than 0.2% in the wavelength range of 1.0-6.0 Å. PIONEER is capable of characterizing large-scale periodic structures up to 200 Å. With a sample-to-detector distance of 0.8 m, PIONEER accommodates various sample environments, including low/high temperature, high pressure, and high magnetic/electric field. A large cylindrical detector array (4.0 sr) with a radial collimator is planned to suppress the background scattering from sample environments. Bottom detector banks provide an additional 0.4 sr coverage or can be removed if needed to accommodate special sample environments. We present virtual experimental results to demonstrate the scientific performance of PIONEER in measuring tiny samples.

3.
Rev Sci Instrum ; 93(7): 075107, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922301

RESUMO

EXPANSE, an EXPanded Angle Neutron Spin Echo instrument, has been proposed and selected as one of the first suite of instruments to be built at the Second Target Station of the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is designed to address scientific problems that involve high-energy resolution (neV-µeV) of dynamic processes in a wide range of materials. The wide-angle detector banks of EXPANSE provide coverage of nearly two orders of magnitude in scattering wavenumbers, and the wide wavelength band affords approximately four orders of magnitude in Fourier times. This instrument will offer unique capabilities that are not available in the currently existing neutron scattering instruments in the United States. Specifically, EXPANSE will enable direct measurements of slow dynamics in the time domain over wide Q-ranges simultaneously and will also enable time-resolved spectroscopic studies. The instrument is expected to contribute to a diverse range of science areas, including soft matter, polymers, biological materials, liquids and glasses, energy materials, unconventional magnets, and quantum materials.

4.
Rev Sci Instrum ; 93(7): 075104, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35922314

RESUMO

CENTAUR has been selected as one of the eight initial instruments to be built at the Second Target Station (STS) of the Spallation Neutron Source at Oak Ridge National Laboratory. It is a small-angle neutron scattering (SANS) and wide-angle neutron scattering (WANS) instrument with diffraction and spectroscopic capabilities. This instrument will maximally leverage the high brightness of the STS source, the state-of-the-art neutron optics, and a suite of detectors to deliver unprecedented capabilities that enable measurements over a wide range of length scales with excellent resolution, measurements on smaller samples, and time-resolved investigations of evolving structures. Notably, the simultaneous WANS and diffraction capability will be unique among neutron scattering instruments in the United States. This instrument will provide much needed capabilities for soft matter and polymer sciences, geology, biology, quantum condensed matter, and other materials sciences that need in situ and operando experiments for kinetic and/or out-of-equilibrium studies. Beam polarization and a high-resolution chopper will enable detailed structural and dynamical investigations of magnetic and quantum materials. CENTAUR's excellent resolution makes it ideal for low-angle diffraction studies of highly ordered large-scale structures, such as skyrmions, shear-induced ordering in colloids, and biomembranes. Additionally, the spectroscopic mode of this instrument extends to lower momentum transfers than are currently possible with existing spectrometers, thereby providing a unique capability for inelastic SANS studies.

5.
Proc Natl Acad Sci U S A ; 119(29): e2120553119, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858352

RESUMO

The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on the phonon system, especially acoustic phonon properties, has so far been elusive. By means of inelastic neutron scattering and first-principles calculations, anomalous scattering spectral intensity from acoustic phonons was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong spin-lattice correlations that renormalize the polarization of acoustic phonon. In particular, a clear magnetic scattering signature of the measured neutron scattering intensity from acoustic phonons is demonstrated by its momentum transfer and temperature dependences. The anomalous scattering intensity is successfully modeled with a modified magneto-vibrational scattering cross-section, suggesting the presence of spin precession driven by phonon. The renormalization of phonon eigenvector is indicated by the observed "geometry-forbidden" neutron scattering intensity from transverse acoustic phonon. Importantly, the eigenvector renormalization cannot be explained by magnetostriction but instead, it could result from the coupling between phonon and local magnetization of ions.

6.
Rev Sci Instrum ; 93(6): 064103, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778015

RESUMO

Revealing the positions of all the atoms in large macromolecules is powerful but only possible with neutron macromolecular crystallography (NMC). Neutrons provide a sensitive and gentle probe for the direct detection of protonation states at near-physiological temperatures and clean of artifacts caused by x rays or electrons. Currently, NMC use is restricted by the requirement for large crystal volumes even at state-of-the-art instruments such as the macromolecular neutron diffractometer at the Spallation Neutron Source. EWALD's design will break the crystal volume barrier and, thus, open the door for new types of experiments, the study of grand challenge systems, and the more routine use of NMC in biology. EWALD is a single crystal diffractometer capable of collecting data from macromolecular crystals on orders of magnitude smaller than what is currently feasible. The construction of EWALD at the Second Target Station will cause a revolution in NMC by enabling key discoveries in the biological, biomedical, and bioenergy sciences.


Assuntos
Difração de Nêutrons , Nêutrons , Cristalografia , Elétrons , Substâncias Macromoleculares/química
7.
Rev Sci Instrum ; 93(6): 065103, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778039

RESUMO

The VERsatile DIffractometer will set a new standard for a world-class magnetic diffractometer with versatility for both powder and single crystal samples and capability for wide-angle polarization analysis. The instrument will utilize a large single-frame bandwidth and will offer high-resolution at low momentum transfers and excellent signal-to-noise ratio. A horizontal elliptical mirror concept with interchangeable guide pieces will provide high flexibility in beam divergence to allow for a high-resolution powder mode, a high-intensity single crystal mode, and a polarized beam option. A major science focus will be quantum materials that exhibit emergent properties arising from collective effects in condensed matter. The unique use of polarized neutrons to isolate the magnetic signature will provide optimal experimental input to state-of-the-art modeling approaches to access detailed insight into local magnetic ordering.

8.
Rev Sci Instrum ; 93(5): 053911, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649786

RESUMO

Materials engineering by neutron scattering (MENUS) at the second target station will be a transformational high-flux, versatile, multiscale materials engineering diffraction beamline with unprecedented new capabilities for the study of complex materials and structures. It will support both fundamental and applied materials research in a broad range of fields. MENUS will combine unprecedented long-wavelength neutron flux and unique detector coverage to enable real-time studies of complex structural and functional materials under external stimuli. The incorporated small angle neutron scattering and transmission/imaging capabilities will extend its sensitivity to larger length scales and higher spatial resolution. Multimodal MENUS will provide crystallographic and microstructure data to the materials science and engineering community to understand lattice strain/phase transition/microstructure/texture evolution in three orthogonal directions in complex material systems under combined extreme applied conditions. The capabilities of MENUS will open new scientific opportunities and meet the research needs for science challenges to enable studies of a range of phenomena and answer the key questions in material design/exploration, advanced material processing, transformative manufacturing, and material operations of national impacts in our daily life.

9.
Rev Sci Instrum ; 93(2): 025101, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232127

RESUMO

Direct-geometry time-of-flight chopper neutron spectroscopy is instrumental in studying dynamics in liquid, powder, and single crystal systems. We report here that real-space techniques in optical imagery can be adapted to obtain reciprocal-space super resolution dispersion for phonon or magnetic excitations from single-crystal neutron spectroscopy measurements. The procedure to reconstruct super-resolution energy dispersion of excitations relies on an accurate determination of the momentum and energy-dependent point spread function and a dispersion correction technique inspired by an image disparity calculation technique commonly used in stereo imaging. Applying these methods to spinwave dispersion data from a virtual neutron experiment demonstrates ∼5-fold improvement over nominal energy resolution.

10.
J Vis Exp ; (171)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34028436

RESUMO

Neutrons have historically been used for a broad range of biological applications employing techniques such as small-angle neutron scattering, neutron spin echo, diffraction, and inelastic scattering. Unlike neutron scattering techniques that obtain information in reciprocal space, attenuation-based neutron imaging measures a signal in real space that is resolved on the order of tens of micrometers. The principle of neutron imaging follows the Beer-Lambert law and is based on the measurement of the bulk neutron attenuation through a sample. Greater attenuation is exhibited by some light elements (most notably, hydrogen), which are major components of biological samples. Contrast agents such as deuterium, gadolinium, or lithium compounds can be used to enhance contrast in a similar fashion as it is done in medical imaging, including techniques such as optical imaging, magnetic resonance imaging, X-ray, and positron emission tomography. For biological systems, neutron radiography and computed tomography have increasingly been used to investigate the complexity of the underground plant root network, its interaction with soils, and the dynamics of water flux in situ. Moreover, efforts to understand contrast details in animal samples, such as soft tissues and bones, have been explored. This manuscript focuses on the advances in neutron bioimaging such as sample preparation, instrumentation, data acquisition strategy, and data analysis using the High Flux Isotope Reactor CG-1D neutron imaging beamline. The aforementioned capabilities will be illustrated using a selection of examples in plant physiology (herbaceous plant/root/soil system) and biomedical applications (rat femur and mouse lung).


Assuntos
Laboratórios , Difração de Nêutrons , Animais , Isótopos , Camundongos , Nêutrons , Tomografia Computadorizada por Raios X
11.
Science ; 350(6257): 193-5, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26450208

RESUMO

Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA